
З’ясувати, чи лежать точки А(2;–1;1), В(5;5;4), С(3;2;–1), D(1;–3;0) в одній площині?


Ответы на вопрос

Checking if Points Lie in the Same Plane
To determine if the points A(2, -1, 1), B(5, 5, 4), C(3, 2, -1), and D(1, -3, 0) lie in the same plane, we can use the concept of vectors and linear dependence.
Step 1: Find Two Vectors in the Plane
We can find two vectors in the plane formed by the points A, B, and C. Let's denote these vectors as \(\vec{AB}\) and \(\vec{AC}\).
\(\vec{AB} = B - A = (5-2, 5-(-1), 4-1) = (3, 6, 3)\)
\(\vec{AC} = C - A = (3-2, 2-(-1), -1-1) = (1, 3, -2)\)
Step 2: Check for Linear Dependence
If the vectors \(\vec{AB}\) and \(\vec{AC}\) are linearly dependent, then the points A, B, and C lie in the same plane.
The vectors \(\vec{AB}\) and \(\vec{AC}\) are linearly dependent if one is a scalar multiple of the other.
Let's calculate the cross product of \(\vec{AB}\) and \(\vec{AC}\) to check for linear dependence.
The cross product of two vectors \(\vec{u} = (u1, u2, u3)\) and \(\vec{v} = (v1, v2, v3)\) is given by: \(\vec{u} \times \vec{v} = (u2v3 - u3v2, u3v1 - u1v3, u1v2 - u2v1)\)
Calculating the cross product: \(\vec{AB} \times \vec{AC} = (6*(-2) - 3*3, 3*1 - 3*(-2), 3*3 - 6*1) = (-12 - 9, 3 + 6, 9 - 6) = (-21, 9, 3)\)
Step 3: Conclusion
If the cross product of \(\vec{AB}\) and \(\vec{AC}\) is the zero vector, then the points A, B, and C lie in the same plane.
Let's check if the cross product is the zero vector.
The cross product (-21, 9, 3) is not the zero vector, which means the points A, B, and C do not lie in the same plane.
Therefore, the points A(2, -1, 1), B(5, 5, 4), C(3, 2, -1) do not lie in the same plane.
If you have any further questions or need additional assistance, feel free to ask!


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili