
Допоможіть!!! Розв'язання з поясненням і системою(одне за х позначити інше за у,систему
розв'язувати не треба) Два велосипедисти виїхали одночасно з двох сіл, від стань між якими становить 9 км, і зустрілися через i 0, 5 год. Визначте швидкість руху кожного, якщо швид кість першого велосипедиста на 1,6 км/год бiльша.

Ответы на вопрос

Ответ:
......на фото..............
Объяснение




Давайте позначимо швидкість першого велосипедиста як "х" км/год, а швидкість другого - "у" км/год. Відомо, що вони виїхали одночасно та зустрілися через \( i + 0,5 \) години.
Шлях, який пройшов перший велосипедист, складає \( (x + 1,6) \cdot (i + 0,5) \) км (швидкість більша на 1,6 км/год, і час - \( i + 0,5 \) години).
Шлях, який пройшов другий велосипедист, складає \( (y) \cdot (i + 0,5) \) км.
Оскільки вони зустрілися через \( i + 0,5 \) годин, то загальний пройдений шлях складає 9 км. Таким чином, ми можемо записати рівняння:
\[ (x + 1,6) \cdot (i + 0,5) + y \cdot (i + 0,5) = 9 \]
Також відомо, що швидкість першого велосипедиста на 1,6 км/год більша за швидкість другого, тобто \( x = y + 1,6 \).
Тепер розв'яжемо систему рівнянь. Підставимо вираз для \( x \) у рівняння:
\[ (y + 1,6 + 1,6) \cdot (i + 0,5) + y \cdot (i + 0,5) = 9 \]
Спростимо рівняння:
\[ (2y + 3,2) \cdot (i + 0,5) = 9 \]
Розкриємо дужки:
\[ 2yi + 3,2i + y + 1,6 = 9 \]
Згрупуємо подібні члени:
\[ 2yi + y + 3,2i + 1,6 = 9 \]
Зведемо подібні члени:
\[ 3yi + 3,2i + 1,6 = 9 \]
Віднімемо 1,6 від обох боків:
\[ 3yi + 3,2i = 7,4 \]
Розділимо обидва боки на 3,2:
\[ y(i + 1) = \frac{7,4}{3,2} \]
Отримаємо вираз для \( y \):
\[ y = \frac{7,4}{3,2(i + 1)} \]
Тепер, підставляючи вираз для \( y \) у рівняння \( x = y + 1,6 \), отримаємо вираз для \( x \).
Це є загальним підходом до розв'язання систем рівнянь. Якщо є конкретний числовий контекст, в якому ви хочете знайти значення \( i \), ви можете продовжити обчислення та розв'язання для отримання конкретних значень \( x \) та \( y \).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili