Вопрос задан 05.11.2023 в 03:22. Предмет Алгебра. Спрашивает Пилипенко Полина.

№1 Упростите выражение (х+9)(х+1)-(х-7)(х+4) при х=-1№2решите уравнение(х+6)(х-1)-(х+3)(х-4)

№3Найдите четыре последовательных целых числа, таких чтобы произведение четвёртого и третьего из этих чисел на 10 больше произведения второго и первого​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Епихина Елизавета.

Ответ:

1) (x+9)(x+1)-(x-7)(x+4)=(1+9)(1+1)-(1-7)(1+4)=10*2-(-6)*5=20+30=50

3)пусть последовательные числа n-1, n, n+1,n+2  

(n - 1)n +10 = (n+1)(n + 2)

n² - n + 10 = n² + 3n + 2

4n = 8

n = 2

n-1=2-1=1

2

3

4

 

Объяснение:

2) (x+6)(x-1)-(x+3)(x-4)=0

xx^{2} +7x+6-(x^{2} -x-12)=0\\x^{2} +7x+6-x^{2} +x+12=0\\8x=-18\\x=2.25если выражение равно 0 то решается так

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1. Для упрощения выражения, вы можете использовать свойство произведения разности, которое гласит, что `(a - b)(a + b) = a^2 - b^2`. Применяя это свойство к вашему выражению, получим:

```python (x + 9)(x + 1) - (x - 7)(x + 4) = (x^2 + 10x + 9) - (x^2 + 4x - 7) = x^2 + 10x + 9 - x^2 - 4x - 7 = -4x - 7 ```

Подставляем `x = -1`:

```python -4*(-1) - 7 = 4 - 7 = -3 ```

2. Для решения уравнения `(x + 6)(x - 1) - (x + 3)(x - 4) = 0`, вы можете использовать свойство произведения разности, как и в предыдущем случае. После применения этого свойства и упрощения, вы получите квадратное уравнение, которое можно решить.

3. Чтобы найти четыре последовательных целых числа, такие, что произведение четвертого и третьего числа на 10 больше произведения второго и первого числа, вы можете начать с любого числа и увеличивать его на 1 на каждом следующем шаге. Например, вы можете начать с чисел 1, 2, 3, 4 и т.д. Затем проверьте, выполняется ли условие для каждого набора чисел.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос