Вопрос задан 04.11.2023 в 15:32. Предмет Алгебра. Спрашивает Трунов Денис.

Розкласти на множники : 1) 3a-3b+ax-bx 2) (a+b)^2 +3a +3b 3) x^8 - 4x^5 + x^3 -4 ⊕Помогите! Делаю

дз! даю 25 балов!⊕
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вахрушев Саша.

Ответ:

1) (a-b)(3+x)

2)(a+b)(a+b+3)

3)(x³-4)(x⁵+1)

Объяснение:

1) 3(a-b)+x(a-b)

2)(a+b)²+3(a+b)

3)x⁵(x³-4)+x³-4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам разложить выражения на множители:

1) 3a - 3b + ax - bx + 2: В этом выражении можно выделить общие множители и сгруппировать их: 3(a - b) + x(a - b) + 2 Теперь вы видите, что в этом выражении есть общий множитель (a - b). Вы можете вынести его за скобки: (a - b)(3 + x) + 2

2) (a + b)^2: Это выражение можно разложить как квадрат суммы: (a + b)^2 = a^2 + 2ab + b^2

3) 3a + 3b: В этом выражении можно вынести общий множитель 3: 3(a + b)

4) x^8 - 4x^5 + x^3 - 4: Это выражение можно разложить, используя метод разности квадратов. Давайте разделим его на две части: x^8 - 4x^5 + x^3 - 4 = (x^8 - 4x^5) + (x^3 - 4)

Теперь давайте разложим каждую из частей:

a) x^8 - 4x^5: В этой части есть общий множитель x^5, который можно вынести: x^5(x^3 - 4)

b) x^3 - 4: Здесь нет общего множителя, но мы видим, что разность куба (x^3) и квадрата (4) является разностью кубов: x^3 - 4 = (x - 2)(x^2 + 2x + 4)

Теперь объединим обе части: (x^5(x - 2))(x^2 + 2x + 4)

Таким образом, вы разложили заданные выражения на множители. Если у вас возникнут дополнительные вопросы или вам нужна дополнительная помощь, не стесняйтесь спрашивать.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос