
В студенческой команде КВН 12 человек. Необходимо послать двоих представителей на организационные
переговоры. Сколькими способами это можно сделать?

Ответы на вопрос

Ответ:
есть 12 вариантов
Объяснение:
Формула выглядит так н!/(н-к)!*к!
Именно потому,что порядок нам не важен! Вася,Петя или Петя,Вася , нам идет как один выбор. 12!/11!*1! = 12



Давай разберемся. У вас есть 12 человек в студенческой команде, и нужно выбрать 2 представителей для организационных переговоров. Это задача на комбинаторику, конкретно на выбор комитета из группы людей.
Количество способов выбрать 2 человек из 12 можно вычислить по формуле сочетаний \(C(n, k) = \frac{n!}{k!(n-k)!}\), где \(n\) - общее количество элементов (в данном случае, людей), а \(k\) - количество элементов, которые вы выбираете (в данном случае, представителей).
Итак, в вашем случае: \[ C(12, 2) = \frac{12!}{2!(12-2)!} \]
Раскрываем факториалы: \[ C(12, 2) = \frac{12 \times 11}{2 \times 1} \]
Вычисляем: \[ C(12, 2) = \frac{132}{2} \]
\[ C(12, 2) = 66 \]
Таким образом, у вас есть 66 различных способов выбрать 2 представителей из студенческой команды для участия в организационных переговорах. Надеюсь, это помогло!


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili