Вопрос задан 30.10.2023 в 16:39. Предмет Алгебра. Спрашивает Парыген Денис.

ПОМОГИТЕ СРОЧНО НАДО РЕШИТЬ ДЕСКРИМИНАНТОМ ДАМ 10Б.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смолова Ира.

× ×(-5+6×2×+5t)

× ×(×-5+12× +5 t

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving Quadratic Equations Using the Discriminant

To solve a quadratic equation using the discriminant, we need to determine the value of the discriminant and then use it to find the solutions. The discriminant is a mathematical term that helps us determine the nature of the solutions of a quadratic equation.

The discriminant is calculated using the formula: D = b^2 - 4ac, where a, b, and c are the coefficients of the quadratic equation in the form ax^2 + bx + c = 0.

The value of the discriminant can provide information about the solutions of the quadratic equation:

- If D > 0, the equation has two distinct real solutions. - If D = 0, the equation has one real solution (a repeated root). - If D < 0, the equation has no real solutions (complex roots).

Now, let's solve a quadratic equation using the discriminant.

Example:

Let's say we have the quadratic equation 2x^2 + 5x - 3 = 0 and we want to find its solutions using the discriminant.

1. Identify the coefficients a, b, and c from the equation: - a = 2 - b = 5 - c = -3

2. Calculate the discriminant using the formula D = b^2 - 4ac: - D = (5)^2 - 4(2)(-3) - D = 25 + 24 - D = 49

3. Determine the nature of the solutions based on the value of the discriminant: - Since D = 49 > 0, the equation has two distinct real solutions.

4. Find the solutions using the quadratic formula: - The quadratic formula is given by x = (-b ± √D) / (2a). - Substituting the values, we get: - x = (-5 ± √49) / (2 * 2) - x = (-5 ± 7) / 4

5. Simplify the solutions: - x1 = (-5 + 7) / 4 = 2 / 4 = 0.5 - x2 = (-5 - 7) / 4 = -12 / 4 = -3

Therefore, the solutions to the quadratic equation 2x^2 + 5x - 3 = 0 are x = 0.5 and x = -3.

Please note that this is just one example of solving a quadratic equation using the discriminant. The process remains the same for other quadratic equations as well.

I hope this explanation helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос