
1+cos(x^2+1)=sin^2(x^2+1)


Ответы на вопрос




To solve the equation 1 + cos(x^2 + 1) = sin^2(x^2 + 1), you can follow these steps:
Rewrite sin^2(x^2 + 1) in terms of cos(x^2 + 1) using the trigonometric identity: sin^2(x) = 1 - cos^2(x).
Substitute this identity into the equation:
1 + cos(x^2 + 1) = 1 - cos^2(x^2 + 1)
- Now, you have a quadratic equation in terms of cos(x^2 + 1). Move all terms to one side of the equation:
cos^2(x^2 + 1) + cos(x^2 + 1) - 1 = 0
- This is a quadratic equation in cos(x^2 + 1). You can solve it using the quadratic formula:
cos(x^2 + 1) = [-b ± √(b^2 - 4ac)] / (2a)
In this case, a = 1, b = 1, and c = -1. Plug these values into the formula:
cos(x^2 + 1) = [-1 ± √(1 + 4)] / 2
cos(x^2 + 1) = [-1 ± √5] / 2
- Now, you have two possible values for cos(x^2 + 1):
a) cos(x^2 + 1) = (-1 + √5) / 2 b) cos(x^2 + 1) = (-1 - √5) / 2
- To find the solutions for x, you'll need to take the inverse cosine (arccos) of these values:
a) x^2 + 1 = arccos((-1 + √5) / 2) b) x^2 + 1 = arccos((-1 - √5) / 2)
- Solve for x in each equation:
a) x^2 = arccos((-1 + √5) / 2) - 1 b) x^2 = arccos((-1 - √5) / 2) - 1
- To find the possible values of x, take the square root of both sides, but remember to consider both the positive and negative square roots:
a) x = ± √[arccos((-1 + √5) / 2) - 1] b) x = ± √[arccos((-1 - √5) / 2) - 1]
These are the solutions for the equation 1 + cos(x^2 + 1) = sin^2(x^2 + 1). However, the exact numerical values of these solutions would require a calculator or a numerical approximation method.



To solve the equation , you can use some trigonometric identities and algebraic manipulations. Here's how you can solve it step by step:
Start with the given equation:
Use the trigonometric identity :
Move the term to the left side of the equation:
Now, you have a quadratic equation in terms of . Let's make a substitution to simplify it. Let , so the equation becomes:
Solve the quadratic equation for . You can use the quadratic formula: In this case, , , and :
Now that you've found the possible values of , remember that . So you have:
Solve for :
Since can take any real value, you may have multiple solutions for . The solutions will depend on the specific values of .
So, you've now expressed the equation in terms of . Depending on the values of , you'll have different solutions for .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili