Вопрос задан 26.10.2023 в 16:52. Предмет Алгебра. Спрашивает Голохвастова Екатерина.

1+cos(x^2+1)=sin^2(x^2+1)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хабибуллин Артур.
1+cos(x^2+1)=sin^2(x^2+1)\\x^2+1=t\\1+cos(t)=sin^2(t)\\1+cos(t)=1-cos^2(t)\\cos^2(t)+cos(t)=0\\cos(t)(cos(t)+1)=0\\cos(t)=0\\t= \frac{\pi}{2}+\pi k\\x^2+1=\frac{\pi}{2}+\pi k\\x^2=\frac{\pi-2}{2} +\pi k\\x=+- \sqrt{\frac{\pi-2}{2}+\pi k } \\cos(t)=-1\\t=\pi +2\pik\\x^2+1=\pi +2\pi k\\x^2=\pi-2\pi k\\x=+- \sqrt{\pi-1+2\pi k}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation 1 + cos(x^2 + 1) = sin^2(x^2 + 1), you can follow these steps:

  1. Rewrite sin^2(x^2 + 1) in terms of cos(x^2 + 1) using the trigonometric identity: sin^2(x) = 1 - cos^2(x).

  2. Substitute this identity into the equation:

1 + cos(x^2 + 1) = 1 - cos^2(x^2 + 1)

  1. Now, you have a quadratic equation in terms of cos(x^2 + 1). Move all terms to one side of the equation:

cos^2(x^2 + 1) + cos(x^2 + 1) - 1 = 0

  1. This is a quadratic equation in cos(x^2 + 1). You can solve it using the quadratic formula:

cos(x^2 + 1) = [-b ± √(b^2 - 4ac)] / (2a)

In this case, a = 1, b = 1, and c = -1. Plug these values into the formula:

cos(x^2 + 1) = [-1 ± √(1 + 4)] / 2

cos(x^2 + 1) = [-1 ± √5] / 2

  1. Now, you have two possible values for cos(x^2 + 1):

a) cos(x^2 + 1) = (-1 + √5) / 2 b) cos(x^2 + 1) = (-1 - √5) / 2

  1. To find the solutions for x, you'll need to take the inverse cosine (arccos) of these values:

a) x^2 + 1 = arccos((-1 + √5) / 2) b) x^2 + 1 = arccos((-1 - √5) / 2)

  1. Solve for x in each equation:

a) x^2 = arccos((-1 + √5) / 2) - 1 b) x^2 = arccos((-1 - √5) / 2) - 1

  1. To find the possible values of x, take the square root of both sides, but remember to consider both the positive and negative square roots:

a) x = ± √[arccos((-1 + √5) / 2) - 1] b) x = ± √[arccos((-1 - √5) / 2) - 1]

These are the solutions for the equation 1 + cos(x^2 + 1) = sin^2(x^2 + 1). However, the exact numerical values of these solutions would require a calculator or a numerical approximation method.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation 1+cos(x2+1)=sin2(x2+1)1 + \cos(x^2 + 1) = \sin^2(x^2 + 1), you can use some trigonometric identities and algebraic manipulations. Here's how you can solve it step by step:

  1. Start with the given equation: 1+cos(x2+1)=sin2(x2+1)1 + \cos(x^2 + 1) = \sin^2(x^2 + 1)

  2. Use the trigonometric identity sin2(θ)=1cos2(θ)\sin^2(\theta) = 1 - \cos^2(\theta): 1+cos(x2+1)=1cos2(x2+1)1 + \cos(x^2 + 1) = 1 - \cos^2(x^2 + 1)

  3. Move the cos2(x2+1)\cos^2(x^2 + 1) term to the left side of the equation: cos2(x2+1)+cos(x2+1)1=0\cos^2(x^2 + 1) + \cos(x^2 + 1) - 1 = 0

  4. Now, you have a quadratic equation in terms of cos(x2+1)\cos(x^2 + 1). Let's make a substitution to simplify it. Let y=cos(x2+1)y = \cos(x^2 + 1), so the equation becomes: y2+y1=0y^2 + y - 1 = 0

  5. Solve the quadratic equation for yy. You can use the quadratic formula: y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} In this case, a=1a = 1, b=1b = 1, and c=1c = -1: y=1±124(1)(1)2(1)y = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} y=1±52y = \frac{-1 \pm \sqrt{5}}{2}

  6. Now that you've found the possible values of yy, remember that y=cos(x2+1)y = \cos(x^2 + 1). So you have: cos(x2+1)=1±52\cos(x^2 + 1) = \frac{-1 \pm \sqrt{5}}{2}

  7. Solve for xx: x2+1=cos1(1±52)x^2 + 1 = \cos^{-1}\left(\frac{-1 \pm \sqrt{5}}{2}\right)

  8. Since xx can take any real value, you may have multiple solutions for xx. The solutions will depend on the specific values of 1±52\frac{-1 \pm \sqrt{5}}{2}.

So, you've now expressed the equation in terms of xx. Depending on the values of 1±52\frac{-1 \pm \sqrt{5}}{2}, you'll have different solutions for xx.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос