9^х -10* 3^х+1 +81 >= 0
Ответы на вопрос

To solve the inequality 9^x - 10 * 3^(x+1) + 81 >= 0, you can start by simplifying it.
First, notice that 81 can be expressed as 9^2, so the inequality becomes:
9^x - 10 * 3^(x+1) + 9^2 >= 0
Now, you can use a substitution to simplify the inequality. Let's set y = 3^x:
y = 3^x
Now, the inequality becomes:
y^2 - 10 * 3 * y + 9^2 >= 0
This is a quadratic inequality in terms of y. You can solve it by factoring or by using the quadratic formula. Factoring is the easiest way in this case:
(y - 9)(y - 9) >= 0
Now, you have a quadratic expression factored. The solution to this inequality is all the values of y that make it greater than or equal to zero.
The only real solution to this inequality is y = 9, as this makes both factors non-negative.
Now, remember that y = 3^x, so:
3^x = 9
To solve for x, take the logarithm of both sides:
x * log(3) = log(9)
x = log(9) / log(3)
Using common logarithms (base 10):
x ≈ 2
So, the solution to the inequality is x ≈ 2.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
