
Вопрос задан 06.10.2023 в 19:34.
Предмет Алгебра.
Спрашивает Волчков Алёша.
Розв'яжіть рівняння x^3+|x|=0


Ответы на вопрос

Отвечает Гановский Алекс.
x³ + |x| = 0
1) x < 0
x³ - x = 0
x(x² - 1) = 0
x (x - 1)(x + 1) = 0
x₁ = 0 - неуд, так как 0 ∉ (- ∞ ; 0)
x - 1 = 0
x₂ = 1 - неуд, так как 1 ∉ (- ∞ ; 0)
x + 1 = 0
x₃ = - 1
2) x ≥ 0
x³ + x = 0
x(x² + 1) = 0
x² + 1 ≠ 0
x = 0
Ответ : - 1 ; 0



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Розглянемо рівняння x^3 + |x| = 0. Оскільки |x| завжди не менше 0, то x^3 + |x| завжди більше або рівне 0 для всіх значень x. Отже, рівняння x^3 + |x| = 0 не має розв'язків, оскільки неможливо знайти таке значення x, при якому вираз буде дорівнювати 0.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili