Вопрос задан 03.10.2023 в 18:12. Предмет Алгебра. Спрашивает Булихова Анастасия.

Решите пожалуйста неравенство 138х2+135х-3=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романов Николай.

Ответ:

X=1

137

Объяснение:

138x2+135x-3=0

276x+135x-3=0

411x-3=0

411x=3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного квадратного уравнения сначала найдем его дискриминант, который определен формулой:

D = b^2 - 4ac,

где a, b и c - коэффициенты уравнения ax^2 + bx + c = 0. В данном случае:

a = 138, b = 135, c = -3.

Подставляем значения в формулу:

D = 135^2 - 4 * 138 * (-3).

D = 18225 + 1656.

D = 19881.

Теперь, используя найденное значение дискриминанта, можно найти корни уравнения. Формулы для вычисления корней квадратного уравнения следующие:

x1 = (-b + √D) / (2a), x2 = (-b - √D) / (2a).

Подставляем значения a, b и D:

x1 = (-135 + √19881) / (2 * 138), x2 = (-135 - √19881) / (2 * 138).

Теперь вычисляем значения:

x1 = (-135 + 141) / 276, x2 = (-135 - 141) / 276.

x1 = 6 / 276 = 1/46, x2 = -276 / 276 = -1.

Итак, уравнение 138x^2 + 135x - 3 = 0 имеет два корня:

x1 = 1/46, x2 = -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос