Cosп/4×sinx-sinп/4×cosx<-3/2
Ответы на вопрос
Ответ:Формула:
sin α ·cos β –cos α ·sin β =sin( α – β )
sin(x–(π/4))=√3/2
Уравнение: sint=√3/2 – простейшее тригонометрическое уравнение решают по формулам: t=(–1)karcsin(√3/2)+πk, k ∈ Z
х–(π/4)=(–1)karcsin(√3/2)+πk, k ∈ Z
х–(π/4)=(–1)k·(π/3)+πk, k ∈ Z
х=(–1)k·(π/3)+(π/4)+πk, k ∈ Z – это ответ.
Так как (–1)k·(π/3)+πk, k ∈ Z можно записать в виде серии из двух ответов:
k=2n
(π/3)+2πn, n ∈ Z
k=2n+1
(2π/3)+2πn, n ∈ Z
то ответ можно записать и так.
х=(π/3)+(π/4)+2πn=(7π/12)+2πn, n ∈ Z или
х=(2π/3)+(π/4)+2πn=(11π/12)+2πn, n ∈ Z
Такая запись полезна при отборе корней
Объяснение:
To solve the inequality cos(π/4) * sin(x) - sin(π/4) * cos(x) < -3/2, you can use trigonometric identities to simplify it and find its solution.
First, let's use the trigonometric identity sin(a - b) = sin(a)cos(b) - cos(a)sin(b) to rewrite the left side of the inequality:
sin(π/4 - x) < -3/2
Now, let's work on solving this inequality. First, find the values of x that satisfy sin(π/4 - x) = -3/2. However, sin values are limited to the range [-1, 1], so there are no real solutions for sin(π/4 - x) = -3/2.
Therefore, the inequality cos(π/4) * sin(x) - sin(π/4) * cos(x) < -3/2 has no real solutions.
In other words, there are no real values of x that make the inequality true.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
