Вопрос задан 30.09.2023 в 19:03. Предмет Алгебра. Спрашивает Даренская Инга.

ПОМОГИТЕ СРОЧНООО ДАЮ 40 БАЛЛОВ ПОЖАЛУЙСТА!!!! А)Разложите на множители: р³+8+6р²+12р Б)Решите

уравнение: р³+8+6р²+12р=0
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мисів Міша.

Ответ:

Объяснение:

А)Разложите на множители:

р³+8+6р²+12р

р³+8+6р²+12р=р³+2²+6р(р+2)=(р+2)(р²-2p+4)+6р(р+2)=(р+2)(р²-2p+4+6p)=(р+2)(р²+4p+4)=(р+2)·(р+2)²=(р+2)³

Ответ: р³+8+6р²+12р=(р+2)³

Б)Решите уравнение:

(р+2)³=0р+2=0⇒р=-2

Ответе: -2;

0 0
Отвечает Дусенов Диас.

Ответ:

А) 8+18р

В) р=-4/9. вот так вот

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам разложить выражение на множители и решить уравнение.

A) Разложение выражения на множители: Для разложения на множители выражения р3+8+6р2+12рр^3 + 8 + 6р^2 + 12р, давайте воспользуемся факторизацией по группам.

р3+8+6р2+12р=(р3+6р2)+(8+12р)р^3 + 8 + 6р^2 + 12р = (р^3 + 6р^2) + (8 + 12р).

Теперь выделим общий множитель из каждой группы:

р2(р+6)+4(2р+1)р^2(р + 6) + 4(2р + 1).

Теперь у нас есть две группы с общими множителями:

р2(р+6)+4(2р+1)р^2(р + 6) + 4(2р + 1).

Теперь мы можем факторизовать обе группы:

р2(р+6)+4(2р+1)=р2(р+6)+42(р+6)р^2(р + 6) + 4(2р + 1) = р^2(р + 6) + 4*2(р + 6).

Теперь у нас есть общий множитель (р+6)(р + 6), который мы можем вынести за скобки:

р2(р+6)+42(р+6)=(р+6)(р2+8)р^2(р + 6) + 4*2(р + 6) = (р + 6)(р^2 + 8).

Итак, разложение на множители данного выражения: (р+6)(р2+8)(р + 6)(р^2 + 8).

B) Решение уравнения: Теперь, когда у нас есть разложение на множители, мы можем решить уравнение:

(р+6)(р2+8)=0(р + 6)(р^2 + 8) = 0.

Решим каждый множитель отдельно:

  1. р+6=0р + 6 = 0.

Выразим рр:

р=6р = -6.

  1. р2+8=0р^2 + 8 = 0.

Выразим р2р^2:

р2=8р^2 = -8.

Теперь возведем обе стороны в квадрат, чтобы избавиться от отрицательного значения:

р=±8р = \pm\sqrt{-8}.

Так как вещественных корней у этого уравнения нет (корень из отрицательного числа), то ответом будут только комплексные корни:

р=6р = -6 и р=8iр = \sqrt{8}i и р=8iр = -\sqrt{8}i.

Итак, у нас есть три решения: р=6р = -6, р=8iр = \sqrt{8}i и р=8iр = -\sqrt{8}i.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос