
Побудуйте графіки функцій y =2x-9 іy=-2,5xв одній системі координат та знайдіть координати їх
точки перетину 

Ответы на вопрос

Ответ:
Решение смотри на фотографии




Щоб побудувати графіки функцій y = 2x - 9 і y = -2.5x у одній системі координат, спочатку нам потрібно намалювати обидва графіки на одному графіку. Ви можете використовувати довільний графічний програмний засіб або навіть папір і олівець. Ось графіки цих двох функцій:
Функція y = 2x - 9 представляє собою лінію з нахилом 2, яка перетинає вісь y в точці (0, -9).
Функція y = -2.5x представляє собою лінію з нахилом -2.5, яка проходить через початок координат (0, 0).
Тепер, щоб знайти точку їх перетину, ми повинні вирішити систему рівнянь:
- 2x - 9 = -2.5x
Тепер давайте вирішимо це рівняння:
2x - 9 = -2.5x
Додамо 2.5x до обох боків:
2x + 2.5x - 9 = 0
4.5x - 9 = 0
Тепер додамо 9 до обох боків:
4.5x = 9
Тепер розділимо обидва боки на 4.5, щоб знайти значення x:
x = 9 / 4.5
x = 2
Тепер, коли ми знайшли значення x, ми можемо використовувати будь-яке з рівнянь, щоб знайти відповідне значення y. Давайте використаємо рівняння y = 2x - 9:
y = 2 * 2 - 9
y = 4 - 9
y = -5
Таким чином, точка перетину графіків функцій y = 2x - 9 і y = -2.5x має координати (2, -5).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili