Вопрос задан 26.09.2023 в 21:52. Предмет Алгебра. Спрашивает Лукъянов Александр.

0, 8(9 + 2x) = 0, 5(2 - 3x) ; 3(2x + 8) - (5x + 2) = 0 ; x - (2x + 3)/2 = (x - 1)/4 |2x - 3| = 5

; |(x - 3)/2 + 5| = 4
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Адамов Иван.

Объяснение:

...........................


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

It looks like you've provided a series of equations and expressions involving the variable "x." I'll solve each one step by step:

  1. 0 = 8(9 + 2x) and 0 = 5(2 - 3x):

    First, let's solve the first equation:

    0 = 8(9 + 2x)

    Divide both sides by 8:

    0 = 9 + 2x

    Subtract 9 from both sides:

    -9 = 2x

    Divide by 2:

    -4.5 = x

    Now, let's solve the second equation:

    0 = 5(2 - 3x)

    Divide both sides by 5:

    0 = 2 - 3x

    Subtract 2 from both sides:

    -2 = -3x

    Divide by -3:

    2/3 = x

  2. 3(2x + 8) - (5x + 2) = 0:

    First, distribute the 3 on the left side:

    6x + 24 - (5x + 2) = 0

    Now, remove the parentheses:

    6x + 24 - 5x - 2 = 0

    Combine like terms:

    6x - 5x + 24 - 2 = 0

    x + 22 = 0

    Subtract 22 from both sides:

    x = -22

  3. x - (2x + 3)/2 = (x - 1)/4:

    Let's first get rid of the fractions by multiplying both sides by 4 (the least common multiple of 2 and 4):

    4x - 2(x + 3) = x - 1

    Now, distribute the -2 on the left side:

    4x - 2x - 6 = x - 1

    Combine like terms:

    2x - 6 = x - 1

    Subtract x from both sides:

    x - 6 = -1

    Add 6 to both sides:

    x = 5

  4. |2x - 3| = 5:

    We'll consider two cases, one with the absolute value equal to 5, and one with it equal to -5 (which becomes 5 after taking the absolute value).

    Case 1: 2x - 3 = 5

    Add 3 to both sides:

    2x = 8

    Divide by 2:

    x = 4

    Case 2: 2x - 3 = -5

    Add 3 to both sides:

    2x = -2

    Divide by 2:

    x = -1

    So, there are two solutions: x = 4 and x = -1.

  5. |(x - 3)/2 + 5| = 4:

    We'll consider two cases again.

    Case 1: (x - 3)/2 + 5 = 4

    Subtract 5 from both sides:

    (x - 3)/2 = -1

    Multiply both sides by 2:

    x - 3 = -2

    Add 3 to both sides:

    x = 1

    Case 2: -(x - 3)/2 - 5 = 4

    Add 5 to both sides:

    -(x - 3)/2 = 9

    Multiply both sides by -2:

    x - 3 = -18

    Add 3 to both sides:

    x = -15

    So, there are two solutions: x = 1 and x = -15.

These are the solutions for each equation and expression.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос