Вопрос задан 26.09.2023 в 02:42. Предмет Алгебра. Спрашивает Филиппович Никита.

Срочно!!ДАЮ 30 Баллов Разложите многочлен на множители и укажите, какие приемы использовались при

этом: 36a2b3 – 96a4b4 + 64a2b5 a2 + 2ab + b2 – c2 y3 – 3y2 + 6y – 8 1652 – 2 · 10725 +652
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Худоярова Полина.

4a4b4

36a2 - 96a4 =-60a2

-60a2 + 64a2=4a4

b3-b4=b-1

b-1+b5=b4

2a2b3-c2

a2+2a=2a2

b+b2=b3

3y-8

y3-3y2=-3y

-3y+6y=3y

-19146

2*10725=21450

1652-21450+652=-19146

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим каждый многочлен по очереди и разложим их на множители:

  1. 36a^2b^3 – 96a^4b^4 + 64a^2b^5:

    Сначала вынесем общий множитель, который равен 4a^2b^3:

    4a^2b^3(9 - 24a^2b + 16a^3b^2).

    Теперь рассмотрим выражение внутри скобок: 9 - 24a^2b + 16a^3b^2. Это квадрат тринома:

    (3ab - 4a^2b^2)^2.

    Итак, полное разложение многочлена:

    4a^2b^3(3ab - 4a^2b^2)^2.

  2. a^2 + 2ab + b^2 – c^2:

    Это бином в квадрате. Разложим его с помощью формулы квадрата суммы:

    (a + b)^2 - c^2.

    Далее, это можно рассматривать как разность двух квадратов:

    [(a + b + c)(a + b - c)].

    Итак, полное разложение многочлена:

    (a + b + c)(a + b - c).

  3. y^3 – 3y^2 + 6y – 8:

    Это многочлен может быть разложен с помощью группировки:

    y^2(y - 3) + 2(3y - 4).

    Теперь можно разложить каждый из двух членов:

    y^2(y - 3) = y^2y - 3y^2, 2(3y - 4) = 6y - 8.

    Итак, полное разложение многочлена:

    y^2y - 3y^2 + 6y - 8.

  4. 1652 – 2 · 10725 + 652:

    Выполним вычисления:

    1652 - 2 * 10725 + 652 = 1652 - 21450 + 652 = -19798.

Итак, разложение многочленов на множители и методы, использованные при этом:

  1. 4a^2b^3(3ab - 4a^2b^2)^2 (Вынесение общего множителя и факторизация квадрата).
  2. (a + b + c)(a + b - c) (Формула квадрата суммы и разность двух квадратов).
  3. y^2y - 3y^2 + 6y - 8 (Группировка и разложение членов).
  4. -19798 (Простые арифметические операции).
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос