
Lg(4^x+9)=lg5+lg(2^x+1 )


Ответы на вопрос

2^2x -5*2^x+9-5=0
2^2x -5*2^x+4=02^x=a
a²-5a+4=0
a1+a2=5 U a1*a2=4
a1=1⇒2^x=1⇒x=0
a2=4⇒2^x=4⇒x=2



To solve the equation lg(4^x+9) = lg(5) + lg(2^x+1), you can use logarithm properties.
Start by simplifying the equation using logarithm properties:
lg(4^x+9) = lg(5) + lg(2^x+1)
Since both sides have a common logarithm base (base 10), you can eliminate the logarithms by setting the expressions inside the logarithms equal to each other:
4^x + 9 = 5 * (2^x + 1)
Now, let's isolate the exponential terms. First, distribute 5 on the right side:
4^x + 9 = 5 * 2^x + 5
Move the 5 * 2^x term to the left side of the equation:
4^x - 5 * 2^x + 9 = 5
To make it easier to solve for x, let's make a substitution. Let y = 2^x. Now, the equation becomes:
(y^2) - 5y + 9 = 5
Rearrange the equation:
y^2 - 5y + 9 - 5 = 0
Simplify further:
y^2 - 5y + 4 = 0
Now, you have a quadratic equation. Factor it:
(y - 4)(y - 1) = 0
Solve for y:
y = 4 or y = 1
Remember that we made a substitution earlier: y = 2^x. Now, substitute back:
2^x = 4 or 2^x = 1
- Solve for x:
For 2^x = 4, take the logarithm of both sides (base 2):
x * log2(2) = log2(4) x = 2
For 2^x = 1, we know that any number raised to the power of 0 is 1:
x = 0
So, the equation has two solutions: x = 0 and x = 2.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili