Вопрос задан 06.09.2023 в 21:52.
Предмет Алгебра.
Спрашивает Герги Таня.
2sin(2x-п/3)= минус
Ответы на вопрос
Отвечает Бондарев Серёжа.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the equation 2sin(2x - π/3) = -1, you can follow these steps:
First, isolate the sine function by dividing both sides by 2:
sin(2x - π/3) = -1/2
Next, you want to find the angles where sine equals -1/2. In the unit circle, sine is equal to -1/2 at two specific angles: π/6 and 5π/6.
Set up two equations for the angles:
2x - π/3 = π/6 and 2x - π/3 = 5π/6
Solve each equation for x:
For the first equation: 2x - π/3 = π/6 2x = π/6 + π/3 2x = π/6 + 2π/6 2x = 3π/6 x = 3π/12 x = π/4
For the second equation: 2x - π/3 = 5π/6 2x = 5π/6 + π/3 2x = 5π/6 + 2π/6 2x = 7π/6 x = 7π/12
So, the solutions for the equation 2sin(2x - π/3) = -1 are x = π/4 and x = 7π/12.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
