
√2 sin x-√2 cos x=√3


Ответы на вопрос





To solve the equation √2 sin(x) - √2 cos(x) = √3, you can follow these steps:
Start by factoring out √2 from both terms on the left side of the equation: √2 (sin(x) - cos(x)) = √3
Divide both sides of the equation by √2 to isolate the expression inside the parentheses: sin(x) - cos(x) = √3 / √2
Simplify the right side by rationalizing the denominator (since √2 = √(2/2) = 1/√2): sin(x) - cos(x) = (√3 / √2) * (√2 / √2) sin(x) - cos(x) = (√6 / 2)
Now, you have the equation: sin(x) - cos(x) = √6 / 2
To solve for x, you can use trigonometric identities or techniques. One common approach is to rewrite sin(x) and cos(x) in terms of sine and cosine of a common angle using the angle sum identities: sin(x) = sin(45°)sin(x) + cos(45°)cos(x) cos(x) = cos(45°)sin(x) - sin(45°)cos(x)
Substitute these expressions into the equation: [sin(45°)sin(x) + cos(45°)cos(x)] - [cos(45°)sin(x) - sin(45°)cos(x)] = √6 / 2
Simplify the equation by canceling out terms: (sin(45°)sin(x) + cos(45°)cos(x)) - (cos(45°)sin(x) - sin(45°)cos(x)) = √6 / 2
[sin(45°)sin(x) + cos(45°)cos(x) - cos(45°)sin(x) + sin(45°)cos(x)] = √6 / 2
Combine like terms: [sin(45°)sin(x) - cos(45°)sin(x)] + [cos(45°)cos(x) + sin(45°)cos(x)] = √6 / 2
Factor out sin(x) and cos(x) on both sides: sin(x)[sin(45°) - cos(45°)] + cos(x)[cos(45°) + sin(45°)] = √6 / 2
Evaluate the trigonometric values for sin(45°) and cos(45°): sin(45°) = cos(45°) = 1 / √2
Substitute these values into the equation: sin(x)[1/√2 - 1/√2] + cos(x)[1/√2 + 1/√2] = √6 / 2
Simplify further: sin(x)[0] + cos(x)[√2/√2] = √6 / 2 cos(x) = √6 / 2
Now, solve for x by taking the arccosine of both sides: x = arccos(√6 / 2)
You can use a calculator to find the numerical value of x: x ≈ 30° or x ≈ 330° (since the cosine function has a period of 360°)
So, the solutions for x are approximately x ≈ 30° and x ≈ 330°.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili