Вопрос задан 06.08.2023 в 16:19. Предмет Алгебра. Спрашивает Куницына Светлана.

Помогите пожалуйста раскрыть скобки s=(х+2)(2х+3)=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кияшов Артем.
S=(х+2)(2х+3)=2х²+3х+4х+6=2х²+7х+6
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, давайте раскроем скобки в выражении s = (x + 2)(2x + 3):

s = (x + 2)(2x + 3)

Для раскрытия скобок, мы будем умножать каждый элемент из первой скобки на каждый элемент из второй скобки. Используем метод FOIL (First, Outer, Inner, Last):

  1. Первый член первой скобки (x) умножаем на первый член второй скобки (2x): x * 2x = 2x^2

  2. Первый член первой скобки (x) умножаем на второй член второй скобки (3): x * 3 = 3x

  3. Второй член первой скобки (2) умножаем на первый член второй скобки (2x): 2 * 2x = 4x

  4. Второй член первой скобки (2) умножаем на второй член второй скобки (3): 2 * 3 = 6

Теперь соберем все полученные члены вместе:

2x^2 + 3x + 4x + 6

Суммируем члены, которые имеют одинаковые переменные:

2x^2 + (3x + 4x) + 6 2x^2 + 7x + 6

Итак, раскрытие скобок дает нам выражение:

s = 2x^2 + 7x + 6

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос