Вопрос задан 31.07.2023 в 16:37. Предмет Алгебра. Спрашивает Истомин Арсений.

найдите три числа,которые образуют:а)арифметическую прогрессию,сумма членов которой равна 30,а есди

из второго ее члена вычесть 2,оставив остальные без изменентя,то получится геометрическая прогрессия;б)геометрическую прогрессию,сумма членов которой равна 93,а если из первого ее члена вычесть 48,оставив остальные без изменения,то получится арифметическая прогрессия.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мамедов Али.
!!!!!!!!!!!!!!!!!!!!!!!!!!




0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения задачи найдем числа, удовлетворяющие условиям каждой прогрессии:

а) Арифметическая прогрессия: Пусть первый член арифметической прогрессии равен "a", а разность между членами равна "d". Тогда сумма трех членов прогрессии равна:

a + (a + d) + (a + 2d) = 30

Упростим уравнение:

3a + 3d = 30 a + d = 10

Из условия геометрической прогрессии:

(a + d) - 2 = a * r 10 - 2 = a * r 8 = a * r

Теперь у нас есть система уравнений:

a + d = 10 a * r = 8

Решим систему:

a = 4 d = 6 r = 2

Таким образом, числа образующие арифметическую прогрессию - 4, 10, 16.

б) Геометрическая прогрессия: Пусть первый член геометрической прогрессии равен "a", а знаменатель между членами равен "r". Тогда сумма трех членов прогрессии равна:

a + ar + ar^2 = 93

Упростим уравнение:

a*(1 + r + r^2) = 93

Из условия арифметической прогрессии:

(a - 48) + (ar) + (ar^2) = a*2

Перепишем уравнение:

a*(1 + r + r^2) - 48 = 2a

Теперь у нас есть система уравнений:

a*(1 + r + r^2) = 93 a*(1 + r + r^2) - 48 = 2a

Решим систему:

93 - 48 = 2a 45 = 2a a = 45 / 2 a = 22.5

Теперь найдем знаменатель геометрической прогрессии:

a * r = 22.5 * r = 22.5 r = 1

Таким образом, числа образующие геометрическую прогрессию - 22.5, 22.5, 22.5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос