
(х-1)^2< корень 2(х-1)


Ответы на вопрос

x≥1
x²-2x+1<√2x-2
√2x-2>x²-2x+1
-2x+1≥0
-2x+1<0
x∈(1; ∛2 +1) - ответ
х≥1



To solve the inequality , we'll need to consider different cases for the value of based on the domain where the inequality holds true. First, let's simplify the inequality:
Now, let , then we have:
To solve this, we need to consider two cases:
Case 1: In this case, the square root of is positive, so we can square both sides of the inequality without changing the inequality's direction:
Now, we can rewrite the inequality in the standard form:
Factorizing the left-hand side:
Now, we have two critical points where the inequality might change: and . Test the inequality for values in each interval:
For : Pick (any value less than 0) (False)
For : Pick (any value between 0 and 2) (True)
For : Pick (any value greater than 2) (False)
Thus, the inequality holds true for (or equivalently, ).
Case 2: In this case, the square root of is not a real number, as would be negative, and taking the square root of a negative number would result in an imaginary number. Hence, there are no valid solutions for (or ).
So, combining the solutions from both cases, we have:
Now, add 1 to all parts of the inequality:
The solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili