
Решите неравенство (x^2-6x+5)(x+3)^2 <=0


Ответы на вопрос





To solve the inequality , we first find the critical points where the expression equals zero and then analyze the sign of the expression in the different intervals separated by these critical points.
Step 1: Find the critical points where the expression equals zero.
The expression is a polynomial, and to find the critical points, we set each factor equal to zero and solve for :
This quadratic equation can be factored as follows:
Solving for , we get
Step 2: Analyze the sign of the expression in different intervals.
Now, we have three critical points: , , and . These critical points divide the number line into four intervals:
Interval 1: Interval 2: Interval 3: Interval 4:
Step 3: Test a point from each interval in the original inequality to determine the sign.
We can pick any value from each interval and evaluate the expression to determine its sign:
Test (Interval 1): (positive)
Test (Interval 2): (positive)
Test (Interval 3): (negative)
Test (Interval 4): (positive)
Step 4: Determine the solution based on the sign of the expression.
The inequality is satisfied when the expression is less than or equal to zero , which means we need the expression to be negative.
From our tests, we see that the expression is negative in Interval 3 . Therefore, the solution to the inequality is:
In interval notation, the solution is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili