Вопрос задан 29.07.2023 в 04:24. Предмет Алгебра. Спрашивает Баёва Алёна.

170сos(arccos(4/5)-arcsin(8/17)) Помогите пожалуйста! Ответ: 168

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ерёмин Иван.

 170\cos(\arccos(4/5)-\arcsin(8/17))=


 =170(\cos(\arccos(4/5))\cdot \cos(\arcsin(8/17))+ \sin(\arccos(4/5))\cdot \sin(\arcsin(8/17)))=


 =170((4/5)\cdot \cos(\arccos(15/17)+\sin(\arcsin(3/5)\cdot (8/17))=


 170\left(\frac{4}{5}\cdot \frac{15}{17}+\frac{3}{5}\cdot \frac{8}{17}\right)=168


Пояснения. Угол arccos(4/5) - это угол в прямоугольном треугольнике с катетом 4 и гипотенузой 5. Второй катет в этом треугольнике равен 3, поэтому arccos(4/5)=arcsin(3/5). Угол arcsin(8/17) - это угол в прямоугольном треугольнике с катетом 8 и гипотенузой 17. Второй катет, если мы не помним его наизусть, ищем по теореме Пифагора. Его квадрат равен 17 в квадрате минус 8 в квадрате, то есть (17-8)(17+8)=9 на 25, то есть 3 в квадрате на 5 в квадрате, то есть 15 в квадрате. Итак, второй катет равен 15, поэтому arcsin (8/17)=arccos (15/17).


Ответ: 168

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим выражение шаг за шагом:

  1. Начнем с вычисления значения выражения внутри скобок: arccos(4/5) - arcsin(8/17)

  2. Найдем значение arccos(4/5): arccos(4/5) = cos^(-1)(4/5)

    Значение arccos(4/5) - это угол, чей косинус равен 4/5. Найдем этот угол.

    cos(угол) = 4/5 Угол = cos^(-1)(4/5)

    Вычислим численное значение: Угол ≈ 36.87°

  3. Теперь найдем значение arcsin(8/17): arcsin(8/17) = sin^(-1)(8/17)

    Значение arcsin(8/17) - это угол, чей синус равен 8/17. Найдем этот угол.

    sin(угол) = 8/17 Угол = sin^(-1)(8/17)

    Вычислим численное значение: Угол ≈ 28.03°

  4. Теперь заменим значения arccos(4/5) и arcsin(8/17) в исходном выражении и вычислим его:

    170 * cos(36.87° - 28.03°)

    170 * cos(8.84°)

  5. Вычислим значение cos(8.84°):

    cos(8.84°) ≈ 0.988

  6. Теперь умножим полученное значение на 170:

    170 * 0.988 ≈ 168.04

Ответ: 168 (округленно).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос