
|4x+5|=5 |x|+8=6 ||x|=10


Ответы на вопрос

x=+-10



To solve absolute value equations, we need to consider both the positive and negative cases for the expression inside the absolute value bars. Let's solve each equation step by step:
- |4x + 5| = 5:
Case 1: 4x + 5 = 5 Subtract 5 from both sides: 4x = 0 Divide both sides by 4: x = 0
Case 2: -(4x + 5) = 5 Distribute the negative sign: -4x - 5 = 5 Add 5 to both sides: -4x = 10 Divide both sides by -4: x = -10/4 or x = -5/2
So, the solutions for the equation |4x + 5| = 5 are x = 0 and x = -5/2.
- |x| + 8 = 6:
Subtract 8 from both sides: |x| = -2
For real numbers, the absolute value cannot be negative, so there are no solutions for this equation. Thus, the equation |x| + 8 = 6 has no solution.
- ||x|| = 10:
Since there are double absolute value signs, we'll consider two cases:
Case 1: |x| = 10
Case 1.1: x = 10 Case 1.2: x = -10
Case 2: -|x| = 10
Case 2.1: -x = 10 Case 2.2: -x = -10
For Case 2.1, multiply both sides by -1: x = -10
For Case 2.2, multiply both sides by -1: x = 10
The solutions for the equation ||x|| = 10 are x = -10 and x = 10.
To summarize:
- For |4x + 5| = 5, the solutions are x = 0 and x = -5/2.
- For |x| + 8 = 6, there are no solutions.
- For ||x|| = 10, the solutions are x = -10 and x = 10.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili