Вопрос задан 27.07.2023 в 01:12. Предмет Алгебра. Спрашивает Жақсыгалиев Қуаныш.

N.152 Задача: Можно ли расположить 158 книг на трёх полках так,чтобы на первой полке было на 8

книг меньше чем на второй,и на 5 книг больше , чем на третьей ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рябуша Игорь.
Там решение через уравнение

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте предположим, что на третьей полке будет х книг. Тогда на первой полке будет (х + 8) книг, а на второй - (х + 5) книг.

Сумма книг на трех полках равна 158:

х + (х + 8) + (х + 5) = 158

Теперь решим уравнение:

3х + 13 = 158

Вычитаем 13 с обеих сторон:

3х = 145

Делим на 3:

х = 145 / 3 ≈ 48.33

Так как количество книг должно быть целым числом, попробуем округлить до 48 и 49 и проверить оба варианта.

  1. Если х = 48: Первая полка: 48 + 8 = 56 книг Вторая полка: 48 + 5 = 53 книг Третья полка: 48 книг Общее количество: 56 + 53 + 48 = 157 книг (не совпадает с 158)

  2. Если х = 49: Первая полка: 49 + 8 = 57 книг Вторая полка: 49 + 5 = 54 книг Третья полка: 49 книг Общее количество: 57 + 54 + 49 = 160 книг (не совпадает с 158)

Ни один из вариантов не удовлетворяет условию, следовательно, невозможно расположить 158 книг на трех полках так, чтобы на первой полке было на 8 книг меньше, чем на второй, и на 5 книг больше, чем на третьей.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос