
Найдите наибольшее и наименьшее значение выражения ( если они есть) sin^2x + 4sin + 1


Ответы на вопрос

sin^2x + 4sinx + 1 = sin^2x + 4sinx + 4 - 4 + 1 = (sin^2x + 4sinx + 4) - 3 = (sinx + 2)^2 - 3
Т.е. минимальное и максимальное значение sin^2x + 4sinx + 1 достигаются при минимальных и максимальных значениях (sinx + 2)^2
Т.к. -1 <= sinx <= 1,
1 <= sinx + 2 <= 3
1 <= (sinx + 2)^2 <= 9
Минимум при sinx = -1: 1 - 4 + 1 = 1 - 3 = -2
Максимум при sinx = 1: 1 + 4 + 1 = 9 - 3 = 6



Для нахождения наибольшего и наименьшего значения выражения sin^2(x) + 4sin(x) + 1, нужно учитывать, что sin(x) может принимать значения от -1 до 1, так как это ограниченная функция.
Давайте разберемся:
- Наименьшее значение: Наименьшее значение будет достигаться, когда sin(x) принимает свое минимальное значение, то есть -1. Подставим sin(x) = -1 в выражение:
sin^2(x) + 4sin(x) + 1 = (-1)^2 + 4(-1) + 1 = 1 - 4 + 1 = -2
Таким образом, наименьшее значение равно -2.
- Наибольшее значение: Наибольшее значение будет достигаться, когда sin(x) принимает свое максимальное значение, то есть 1. Подставим sin(x) = 1 в выражение:
sin^2(x) + 4sin(x) + 1 = (1)^2 + 4(1) + 1 = 1 + 4 + 1 = 6
Таким образом, наибольшее значение равно 6.
Итак, наименьшее значение равно -2, а наибольшее значение равно 6.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili