4а²-1/ а²-9 : 6а²+3/а+3
Ответы на вопрос
................................

To simplify the given expression, we first need to factor the numerator and the denominator of each fraction. Then, we can simplify further by canceling out common factors. Let's start step by step:
Expression: (4a² - 1) / (a² - 9) : (6a² + 3) / (a + 3)
Step 1: Factor the numerator and denominator of each fraction.
Numerator of the first fraction: 4a² - 1 This is a difference of squares, which can be factored as (2a + 1)(2a - 1).
Denominator of the first fraction: a² - 9 This is also a difference of squares, which can be factored as (a + 3)(a - 3).
Numerator of the second fraction: 6a² + 3 Factor out 3 from the numerator: 3(2a² + 1).
Denominator of the second fraction: a + 3
Step 2: Rewrite the expression after factoring:
[(2a + 1)(2a - 1)] / [(a + 3)(a - 3)] : [3(2a² + 1)] / (a + 3)
Step 3: Invert the second fraction and change division to multiplication:
[(2a + 1)(2a - 1)] / [(a + 3)(a - 3)] * [(a + 3) / 3(2a² + 1)]
Step 4: Cancel out common factors:
We can cancel out (a + 3) from the numerator of the first fraction and the denominator of the second fraction.
Result:
(2a - 1) / (a - 3) * 1 / 3(2a² + 1)
Final simplified expression:
(2a - 1) / [3(a - 3)(2a² + 1)]
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
