
2(cosx-1)sin2x=3cos(3п/2+x)[3п/2;3п]


Ответы на вопрос

x={pi*n;±2pi/3+2pi*n}, n∈Z.
Ответ: x={2pi; 8pi/3; 3pi}




To solve the trigonometric equation 2(cosx-1)sin2x = 3cos(3π/2+x) over the interval [3π/2, 3π], follow these steps:
Step 1: Simplify the right-hand side of the equation. Step 2: Expand the left-hand side of the equation. Step 3: Solve for x.
Step 1: Simplify the right-hand side of the equation: cos(3π/2 + x) = cos(3π/2)cos(x) - sin(3π/2)sin(x) Since cos(3π/2) = 0 and sin(3π/2) = -1: cos(3π/2 + x) = -sin(x)
Step 2: Expand the left-hand side of the equation: 2(cosx - 1)sin2x = 2(cosx - 1) * 2sin(x)cos(x) = 4sin(x)cos(x)(cosx - 1)
Step 3: Substitute the simplified right-hand side back into the equation: 4sin(x)cos(x)(cosx - 1) = 3(-sin(x))
Now, we can cancel out the common factor of sin(x): 4cos(x)(cosx - 1) = -3
Expand the expression: 4cos^2(x) - 4cos(x) = -3
Rearrange the equation to bring everything to one side: 4cos^2(x) - 4cos(x) + 3 = 0
Now, this is a quadratic equation in terms of cos(x). To solve it, we can use the quadratic formula:
cos(x) = [ -(-4) ± √((-4)^2 - 4 * 4 * 3) ] / (2 * 4) cos(x) = [ 4 ± √(16 - 48) ] / 8 cos(x) = [ 4 ± √(-32) ] / 8 cos(x) = [ 4 ± 4i√2 ] / 8
cos(x) = (1/2) ± (1/2)i√2
Since the domain of cos(x) is [-1, 1], the imaginary part is not possible in this context. Therefore, we have only one real solution for cos(x):
cos(x) = (1/2)
Now, to find the value of x, we take the arccosine (inverse cosine) of (1/2):
x = arccos(1/2)
Using the unit circle or trigonometric identities, we know that arccos(1/2) is π/3.
However, we need to ensure that the solution lies in the given interval [3π/2, 3π].
π/3 is approximately 1.0472, which lies between π/2 and π. It doesn't fall within the interval [3π/2, 3π].
To find the other solution within the given interval, we consider that cos(x) is positive in both the first and fourth quadrants (0 ≤ x ≤ π/2 and 2π ≥ x ≥ 3π/2).
So, the other solution within the given interval is:
x = 2π - π/3 = 6π/3 - π/3 = 5π/3
Thus, the solutions to the equation within the interval [3π/2, 3π] are:
x = π/3 and x = 5π/3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili