
Решите неравенство:3(x-1)(5x+2)-(5x+6)(3x-1)≤0


Ответы на вопрос

(3x-3)(5x+2)-(15+13x-6)≤0
15-9x-6-15
-13x+6≤0
-22x≤0
22x≥0
x є [ 0; +∞ )



To solve the inequality, we first need to simplify the expression on the left-hand side (LHS) and then find the intervals where it is less than or equal to zero.
Given inequality: 3(x-1)(5x+2) - (5x+6)(3x-1) ≤ 0
Step 1: Expand the expressions within parentheses:
LHS = 3(x)(5x) + 3(x)(2) - 1(5x)(5x) - 1(5x)(2) - (5x)(3x) + (5x)(1) - 6(3x) + 6(1)
Step 2: Simplify further:
LHS = 15x^2 + 6x - 25x^2 - 2x - 15x + 6
Step 3: Combine like terms:
LHS = -10x^2 - 11x + 6
Now we have the quadratic expression -10x^2 - 11x + 6 on the left-hand side of the inequality.
Step 4: Set the expression equal to zero to find the critical points:
-10x^2 - 11x + 6 = 0
Step 5: Factor the quadratic expression:
-10x^2 - 11x + 6 = -(10x - 3)(x + 2)
Now, we can find the critical points by setting each factor equal to zero:
10x - 3 = 0 ---> x = 3/10
x + 2 = 0 ---> x = -2
Step 6: Plot the critical points on a number line and choose test points from each interval to determine the sign of the expression in each interval.
Number line:
-------------o-------------------o--------------
-2 3/10
Step 7: Test points:
Let's choose test points x = -3 (from the interval x < -2), x = 0 (from the interval -2 < x < 3/10), and x = 1 (from the interval x > 3/10).
Step 8: Evaluate the expression at each test point:
For x = -3: LHS = -10(-3)^2 - 11(-3) + 6 = -90 + 33 + 6 = -51
For x = 0: LHS = -10(0)^2 - 11(0) + 6 = 6
For x = 1: LHS = -10(1)^2 - 11(1) + 6 = -15
Step 9: Determine the sign of the expression in each interval:
In the interval x < -2: LHS is negative (-51 < 0). In the interval -2 < x < 3/10: LHS is positive (6 > 0). In the interval x > 3/10: LHS is negative (-15 < 0).
Step 10: Write the solution:
The solution to the inequality is:
x < -2 or x > 3/10
Please note that we use an open circle at -2 and 3/10 in the number line because the inequality is "less than or equal to," but since we only have "<" in the solution, we use an open circle to indicate that the points -2 and 3/10 are not included in the solution set.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili