Вопрос задан 19.07.2023 в 10:14. Предмет Алгебра. Спрашивает Жуков Антон.

А) 3x-4y=5 4x+y=8 Б)2x-5y=7 -4x+10y=3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пастухов Михаил.

А) 3х-4у=5

у=8-4х

3х-4 (8-4х)=5

х=37/19

у=8-4*37/19

у=4/19

Ответ: х=37/19., у=4/19

Б) 2х-5у=7

-4х+10у=3

х=7/2+5/2у

-4х+10у=3

-4 (7/2+5/2у)+10у=3

у€ø

Ответ:(х,у) €ø

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve each system of equations, we can use either the substitution method or the elimination method. I'll demonstrate both methods for each system:

А) 3x - 4y = 5 4x + y = 8

Substitution method: Step 1: Solve one equation for one variable. From the second equation, isolate y: y = 8 - 4x

Step 2: Substitute the expression for y from Step 1 into the first equation: 3x - 4(8 - 4x) = 5

Step 3: Solve for x: 3x - 32 + 16x = 5 19x - 32 = 5 19x = 37 x = 37 / 19 x ≈ 1.947

Step 4: Now, substitute the value of x into either of the original equations to find y: 4(1.947) + y = 8 7.788 + y = 8 y = 8 - 7.788 y ≈ 0.212

So the solution to the system is approximately x ≈ 1.947 and y ≈ 0.212.

Elimination method: Step 1: Multiply both equations by suitable constants to make the coefficients of y in both equations equal. In this case, we'll multiply the first equation by 1 and the second equation by 4: 3x - 4y = 5 4(4x + y) = 4(8) 3x - 4y = 5 16x + 4y = 32

Step 2: Add the two equations to eliminate y: (3x - 4y) + (16x + 4y) = 5 + 32 19x = 37 x = 37 / 19 x ≈ 1.947

Step 3: Substitute the value of x into either of the original equations to find y: 4(1.947) + y = 8 7.788 + y = 8 y = 8 - 7.788 y ≈ 0.212

The solution is the same as before: approximately x ≈ 1.947 and y ≈ 0.212.

Now let's solve the second system:

Б) 2x - 5y = 7 -4x + 10y = 3

Substitution method: Step 1: Solve one equation for one variable. From the first equation, isolate x: x = (7 + 5y) / 2

Step 2: Substitute the expression for x from Step 1 into the second equation: -4((7 + 5y) / 2) + 10y = 3

Step 3: Solve for y: -2(7 + 5y) + 10y = 6 -14 - 10y + 10y = 6 -14 = 6 (This is a contradiction and can't be solved.)

Since the equation leads to a contradiction (false statement), there is no solution to this system of equations. The two lines representing the equations are parallel and do not intersect.

Elimination method: Step 1: Multiply both equations by suitable constants to make the coefficients of x in both equations equal. In this case, we'll multiply the first equation by 2 and the second equation by 1: 2(2x - 5y) = 2(7) -4x + 10y = 3

Step 2: Add the two equations to eliminate x: (2x - 5y) + (-4x + 10y) = 7 + 3 -5y + 10y = 10 5y = 10 y = 10 / 5 y = 2

Step 3: Substitute the value of y into either of the original equations to find x: 2x - 5(2) = 7 2x - 10 = 7 2x = 17 x = 17 / 2 x ≈ 8.5

Again, this leads to a contradiction as the system has no solution.

Therefore, the second system has no solution, and the first system has a unique solution of approximately x ≈ 1.947 and y ≈ 0.212.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос