Вопрос задан 19.07.2023 в 06:30. Предмет Алгебра. Спрашивает Николаев Илья.

Какая вероятность того, что наугад название натуральное одноцифровое число окажется числом, кратным

3? А) 3Б) 1/3 В) 3/10Г) 1 Прошу с объяснениям!​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вечирко Виктория.

Здравствуйте!

Ответ:

Б (\frac{1}{3})

Объяснение:

Всего однозначных натуральных чисел 9: с 1 до 9. Из них 3 кратны трём: 3; 6; 9. Отношение общего количества и удовлетворяющим условию:

\frac{3}{9} =\frac{3/3}{9/3} =\frac{1}{3}

0 0
Отвечает Вараксина Женя.

Ответ: кратны трём числа 3; 6; 9, то есть благоприятных событий 3. Так как всего 9 одноцифровых натуральных чисел, то искомая вероятность равна 3/9=1/3.

Ответ: 1/3.

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы число было кратным 3, необходимо, чтобы его сумма цифр также была кратна 3. Рассмотрим однозначные натуральные числа:

  1. Число 1: Сумма цифр равна 1. Не является кратным 3.
  2. Число 2: Сумма цифр равна 2. Не является кратным 3.
  3. Число 3: Сумма цифр равна 3. Является кратным 3.
  4. Число 4: Сумма цифр равна 4. Не является кратным 3.
  5. Число 5: Сумма цифр равна 5. Не является кратным 3.
  6. Число 6: Сумма цифр равна 6. Является кратным 3.
  7. Число 7: Сумма цифр равна 7. Не является кратным 3.
  8. Число 8: Сумма цифр равна 8. Не является кратным 3.
  9. Число 9: Сумма цифр равна 9. Является кратным 3.

Таким образом, из девяти однозначных натуральных чисел только 3, 6 и 9 являются кратными 3.

Теперь можем рассчитать вероятность выбора числа, кратного 3, наугад из этого множества. Всего возможно 9 различных однозначных натуральных чисел, и из них только 3 являются кратными 3.

Вероятность выбрать кратное 3 число = (число кратных 3) / (общее число чисел) = 3/9 = 1/3.

Ответ: Вероятность того, что наугад выбранное однозначное натуральное число окажется числом, кратным 3, равна 1/3 (вариант Б).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос