Вопрос задан 17.07.2023 в 14:27. Предмет Алгебра. Спрашивает Лыков Никита.

В графе три вершины имеют степень 4, две вершины степень 5 и пять вершин степень 6. Сколько ребер в

этом графе?
1 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Братский Гена.

Ответ:26

Объяснение:(6*5+5*2+4*3)/2=52/2=26

1 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы определить количество ребер в графе на основе информации о степенях его вершин, мы можем использовать формулу рукопожатий графа. Формула рукопожатий утверждает, что сумма степеней всех вершин в графе равна удвоенному количеству ребер.

Дано:

  • 3 вершины имеют степень 4
  • 2 вершины имеют степень 5
  • 5 вершин имеют степень 6

Для вершин с степенью 4 общая степень будет 3 * 4 = 12. Для вершин с степенью 5 общая степень будет 2 * 5 = 10. Для вершин с степенью 6 общая степень будет 5 * 6 = 30.

Таким образом, общая сумма степеней всех вершин равна 12 + 10 + 30 = 52.

Сумма степеней всех вершин равна удвоенному количеству ребер: 2 * Количество ребер = 52.

Разделим обе стороны уравнения на 2: Количество ребер = 52 / 2 = 26.

Таким образом, в этом графе имеется 26 ребер.

2 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос