
Найди корни уравнения 13,3(x−9)(x+40)=0.


Ответы на вопрос

Ответ:
- 40; 9.
Объяснение:
13,3(x−9)(x+40)=0
х - 9 = 0 или х + 40 = 0
х = 9 или х = - 40
Ответ: - 40; 9.



13,3(х²+40х-9х-360)=0
13,3*(х²+31х-360)=0
13,3х²+412,3х-4788=0║*10
133х²+4123х-47880=0
Д = (4123)²+4*133*47880 = 16999129 + 25472160 = 42471289
√Д = 6517
х1 = (-4123-6517)/2*133 = -10640/266 = -5320/133 = -40
х2 = (-4123+6517)/266 = 2394/266 = 1197/133 = 9



Чтобы найти корни уравнения, мы должны приравнять выражение в скобках к нулю и решить полученное уравнение:
(x - 9)(x + 40) = 0
Так как произведение равно нулю, то один из множителей должен быть равен нулю:
x - 9 = 0 или x + 40 = 0
Решим каждое из этих уравнений по отдельности:
x - 9 = 0 Добавим 9 к обеим сторонам: x = 9
x + 40 = 0 Вычтем 40 из обеих сторон: x = -40
Таким образом, корни уравнения 13,3(x−9)(x+40)=0 равны x = 9 и x = -40.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili