
Вопрос задан 14.07.2023 в 06:13.
Предмет Алгебра.
Спрашивает Рубчинская Аполлинария.
Разложи на множители 27−3p−p^2+p^3.


Ответы на вопрос

Отвечает Кабан Анастасія.
27 - 3p - p² + p³ = (p³ + 27) - (p² + 3p) = (p + 3)(p² - 3p + 9) - p(p + 3) =
= (p + 3)(p² - 3p + 9 - p) = (p + 3)(p² - 4p + 9)



Отвечает Gychyn Vasil.
27−3p−p²+p³=(27+р³)-р*(3+р)=(3+р)*(9-3р+р²-р)=(3+р)(р²-4р+9)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давай разложим данное выражение на множители:
Выражение: 27 - 3p - p^2 + p^3
Сначала попробуем провести группировку:
(27 - 3p) + (-p^2 + p^3)
Теперь можем вынести общий множитель из каждой группы:
3(9 - p) + p^2(-1 + p)
Далее, можем применить формулу разности квадратов коэффициентов при второй и третьей степенях:
3(3 - p)(3 + p) + p^2(1 - p)
Таким образом, разложение данного выражения на множители:
3(3 - p)(3 + p) + p^2(1 - p)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili