Вопрос задан 10.07.2023 в 10:24. Предмет Алгебра. Спрашивает Лыпка Ирина.

Игральную кость бросают три раза. Найти вероятность того, что все три раза выпадут различные числа

очков.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Медведева Анна.

Ответ:

5/9

Объяснение:

Первый бросок. Любое выпавшее число нам подходит. P1 = 1

Второй бросок. Нам подойдёт любое число, кроме выпавшего в первом броске. P2 = 5/6

Третий бросок. Подойдёт любое число, кроме выпавших в первом и втором броске. P3 = 4/6

Общая вероятность равна произведению вероятностей отдельных событий: P = P1*P2*P3 = 1*(5/6)*(4/6) = 20/36 = 5/9 ≈ 56%

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения вероятности того, что все три раза выпадут различные числа очков при бросании игральной кости три раза, мы можем использовать метод комбинаторики.

Всего у нас есть 6 возможных значений (от 1 до 6), и нам нужно выбрать 3 различных значения из них. Это можно сделать следующим образом:

  1. Выбираем первое значение: 6 возможных вариантов.
  2. Выбираем второе значение (не совпадающее с первым): 5 возможных вариантов.
  3. Выбираем третье значение (не совпадающее ни с первым, ни со вторым): 4 возможных варианта.

Таким образом, общее количество благоприятных исходов составляет 6 * 5 * 4 = 120.

Теперь посчитаем общее количество возможных исходов при трех бросках игральной кости, где каждый бросок имеет 6 возможных значений:

Общее количество возможных исходов = 6 * 6 * 6 = 216.

И, наконец, вероятность того, что все три раза выпадут различные числа очков:

Вероятность = (Количество благоприятных исходов) / (Общее количество возможных исходов) = 120 / 216 ≈ 0.5556 или около 55.56%.

Итак, вероятность того, что при трех бросках игральной кости все три раза выпадут различные числа очков, составляет около 55.56%.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос