Вопрос задан 07.07.2023 в 01:59. Предмет Алгебра. Спрашивает Анисимова Юлия.

Знайти два послідовних натуральних чисел добуток яких на 121 більший за менше з них​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абраменко Мария.

Відповідь:11,12

Пояснення:

х-перше число  (х+1) друге число

х(х+1)-х=121

x^{2}=121

х=11

х=-11-не підходить бо число має бути натуральне

ТОМУ х=11- першечисло

11+1=12 друге число

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Позначимо перше натуральне число як "n", тоді наступне натуральне число буде "n + 1". За умовою задачі маємо:

n(n + 1) > n

n^2 + n > n

n^2 > 0

Отримали, що n^2 завжди більше за 0 для будь-якого натурального числа n. Це означає, що нерівність n(n + 1) > n виконується для будь-якого натурального числа n.

Таким чином, немає двох послідовних натуральних чисел, добуток яких на 121 буде більший за менше з них.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос