
Найдите: 1)Значение а, если log3a=1/2 2)Значение b,если log(b)1/81=-4 3)Значение c,если log6c=3
4)Значение m,если log(m)0.25=-4 2.Если log(7)3=a и log(7)5=b,то найдите: 1)log(7)25-log(7)243 2)log(125)81+2log(7)15 3)1/2log(7)441-log(5)9 4)log(15)21+3log(15)245 Буду рад,если хотя бы решите одно задание:)

Ответы на вопрос

Ответ:
Объяснение:
1)Значение а, если log3 (a) = 1/2; a = 3^(1/2) = √3
2)Значение b,если log(b) (1/81) = -4; b^(-4) = 1/81 = 3^(-4); b = 3
3)Значение c,если log6 (c) = 3; c = 6^3 = 216
4)Значение m,если log(m) (0.25) = -4; m^(-4) = 0,25 = (√2)^(-4); m = √2
2.Если log(7) 3 = a и log(7) 5 = b,то найдите:
1)log(7) 25 - log(7) 243 = log(7) (5^2) - log(7) (3^5) = 2log(7) 5 - 5log(7) 3 =
= 2b - 5a
2)log(125) 81 + 2log(7) 15 = log(5^3) (3^4) + 2(log(7) 3 + log(7) 5) = A
Заметим, что log(5) 3 = log(7) 3 : log(7) 5 = a/b. Отсюда
log(5^3) (3^4) = (4log(7) 3) : (3log(7) 5) = 4a/(3b)
Возвращаемся к примеру:
A = log(5^3) (3^4) + 2(log(7) 3 + log(7) 5) = 4a/(3b) + 2(a + b)
3)1/2log(7) 441 - log(5) 9 = log(7) (√441) - 2log(5) 3 = log(7) 21 - 2a/b =
= log(7) 3 + log(7) 7 - 2a/b = a + 1 - 2a/b
4)log(15) 21+3log(15) 245 = log(7) 21 / (log(7) 15) + 3log(7) 245 / (log(7) 15) =
= [log(7) 3 + log(7) 7 + 3log(7) (5*7^2)] / (log(7) 15) =
= [a + 1 + 3(log(7) 5 + log(7) 7^2)] / (log(7) 3 + log(7) 5) =
= [a + 1 + 3(b + 2)] / (a + b) = (a + 3b + 7) / (a + b)



Конечно, я помогу вам решить эти задачи! Давайте начнем с первой задачи:
Дано: Мы знаем, что , поэтому: можно переписать как .
Таким образом, , и квадрат обеих сторон даёт .
Дано: Мы знаем, что , поэтому: можно переписать как .
Так как , то , и следовательно, , откуда .
Дано: Мы знаем, что , поэтому: означает .
Таким образом, , и куб обеих сторон даёт .
Дано: Мы знаем, что , поэтому: означает .
Так как , то , откуда . Обратите внимание, что это комплексное значение.
Теперь давайте перейдем ко второй части задачи: