Вопрос задан 05.07.2023 в 09:59. Предмет Алгебра. Спрашивает Гурна Мария.

Х²-5х+6=0 Теоремой виетой

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аристов Данил.

Ответ:

x1=2,x2=3

Объяснение:

Известно,что сумма корней равна противоположному значению второго члена,то есть b,в нашем случае -5

Произведение же равно третьему члену,c,т.е 6

Таким образом

x1+x2=5

x1*x2=6

x1=2

x2=3

0 0
Отвечает Кутовая Сашуля.

Ответ:

3 ; 2

Объяснение:

По теореме Виета:

x₁+x₂=5

x₁x₂=6

Подберем корни , которые дают в сумме 5 , а в произведении равно 6.

Очевидно, решением являются числа 3 ; 2

Проверка:

3+2=5

3*2=6  

Подходит

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Данное квадратное уравнение x25x+6=0x^2 - 5x + 6 = 0 может быть решено с использованием теоремы Виета. Теорема Виета утверждает, что если у нас есть квадратное уравнение вида ax2+bx+c=0ax^2 + bx + c = 0, то сумма корней этого уравнения равна ba-\frac{b}{a}, а произведение корней равно ca\frac{c}{a}.

В данном уравнении a=1a = 1, b=5b = -5 и c=6c = 6. Исходя из теоремы Виета:

Сумма корней: x1+x2=ba=51=5x_1 + x_2 = -\frac{b}{a} = -\frac{-5}{1} = 5.

Произведение корней: x1x2=ca=61=6x_1 \cdot x_2 = \frac{c}{a} = \frac{6}{1} = 6.

Теперь мы знаем, что корни уравнения имеют сумму 5 и произведение 6. Нам нужно найти эти корни. Мы можем решить это, используя факт, что корни x1x_1 и x2x_2 удовлетворяют уравнению:

x25x+6=0x^2 - 5x + 6 = 0.

Факторизуем левую сторону:

(x2)(x3)=0(x - 2)(x - 3) = 0.

Теперь мы видим, что корни уравнения - это x1=2x_1 = 2 и x2=3x_2 = 3, так как при подстановке этих значений в уравнение, обе скобки становятся равными нулю.

Итак, корни уравнения x25x+6=0x^2 - 5x + 6 = 0 равны 2 и 3, что подтверждает результаты, полученные с использованием теоремы Виета.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос