
(|x+1|+|x-2|)/(x+199)<1


Ответы на вопрос

Ответ:(-∞;-199)∪(-66;200)
Объяснение:




To solve the inequality , we need to consider different cases based on the absolute value expressions.
Case 1: In this case, both and are non-negative, so the absolute value expressions can be simplified as: Simplify the numerator: Subtract from both sides: However, this condition is already met in the case , so there's no additional restriction from this case.
Case 2: In this case, is positive, but is negative, so the absolute value expressions become: Simplify the numerator: Subtract 199 from both sides: So, for this case, must satisfy .
Case 3: In this case, both and are negative, so the absolute value expressions become: Simplify the numerator: Add to both sides: Subtract 199 from both sides: Divide by 3 (remembering to reverse the inequality since we're dividing by a negative number): So, for this case, must satisfy .
Putting all the cases together, we have the solution for the inequality: This is the final solution set for the given inequality.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili