
|x - 1| + y = 4, x + y = 3;


Ответы на вопрос

Ответ:
|x-1|+y=4
|x-1|+0=4
|x-1|=4
x-1=4
x-1=-4
x+y=3
x+y-3=3-3
x+y-3=0



To solve the system of equations:
- |x - 1| + y = 4
- x + y = 3
You can approach this problem by considering two cases for the absolute value expression |x - 1|:
Case 1: x - 1 is positive or zero: In this case, the absolute value expression |x - 1| is the same as x - 1. So, we have:
x - 1 + y = 4 (from equation 1) x + y = 3 (from equation 2)
Now, you can solve this system of linear equations by either substitution or elimination. We'll use the elimination method here. Subtract equation 2 from equation 1 to eliminate y:
(x - 1 + y) - (x + y) = 4 - 3
This simplifies to:
x - 1 - x - y + y = 1
The x terms cancel out, and you're left with:
-1 = 1
However, this equation is not true, so this case does not yield a valid solution.
Case 2: x - 1 is negative: In this case, the absolute value expression |x - 1| becomes -(x - 1) or -x + 1. So, we have:
-x + 1 + y = 4 (from equation 1) x + y = 3 (from equation 2)
Now, we can use the elimination method again. Add equation 2 to equation 1 to eliminate y:
(-x + 1 + y) + (x + y) = 4 + 3
This simplifies to:
1 + 2y = 7
Subtract 1 from both sides:
2y = 7 - 1 2y = 6
Now, divide both sides by 2 to solve for y:
2y/2 = 6/2 y = 3
Now that you have the value of y, you can substitute it back into equation 2 to find the value of x:
x + 3 = 3
Subtract 3 from both sides:
x = 0
So, the solution to the system of equations is:
x = 0 y = 3


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili