Вопрос задан 27.06.2023 в 05:06. Предмет Алгебра. Спрашивает Соловьев Ромчик.

После того, как лодка прошла 18 км вниз по течению, она прошла 20 км вверх по течению и пролежала в

пути 2 ч. Если скорость лодки в чистой воде составляет 20 км / ч, найдите скорость реки. ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баклажов Егор.

Ответ:

ответ 1,75

короче, так как скорость в стоячей воде 20км/ч, следовательно время за которое он прошёл 18км по течению реки будет, расстояние (18км) делённое на скорость 20км/ч плюс x(скорость движения реки) по аналогии время движения против течения, 20км/(20-x), суммируем два времени и получаем сумму, далее решаем уравнение, и находим корни

Объяснение:18/(20+Х)+20/(20-Х)

                       360-18Х+400+20Х=800-Х2^2

                      Х1=7/4=1,75

                      Х2=-11/4=-2,75 СКОРОСТЬ НЕ МОЖЕТ БЫТЬ ОТРИЦАТЕЛЬНОЙ

                           ОТВЕТ 1,75

ПОЖАЛУЙСТА ДАЙ ЛУЧШИЙ ОТВЕТ И ЛАЙК Я СТАРАЛСЯ

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим скорость лодки в чистой воде как "V", а скорость течения реки как "R".

Когда лодка движется вниз по течению, ее скорость увеличивается на скорость течения, поэтому она движется со скоростью (V + R) км/ч.

Когда лодка движется вверх по течению, ее скорость уменьшается на скорость течения, поэтому она движется со скоростью (V - R) км/ч.

Известно, что после прохождения 18 км вниз по течению и 20 км вверх по течению лодка пролежала в пути 2 часа. Мы можем использовать формулу времени, расстояния и скорости:

Время = Расстояние / Скорость

Для движения вниз по течению:

Время1 = 18 км / (V + R)

Для движения вверх по течению:

Время2 = 20 км / (V - R)

Сумма этих двух времен равна 2 часам:

Время1 + Время2 = 2 ч

18 / (V + R) + 20 / (V - R) = 2

Теперь мы можем решить это уравнение для нахождения значения R (скорости течения):

18 / (V + R) + 20 / (V - R) = 2

Умножим обе стороны на (V + R)(V - R), чтобы избавиться от дробей:

18(V - R) + 20(V + R) = 2(V + R)(V - R)

Раскроем скобки:

18V - 18R + 20V + 20R = 2(V^2 - R^2)

Сгруппируем по переменным:

(18V + 20V) - (18R - 20R) = 2(V^2 - R^2)

38V - 2R = 2(V^2 - R^2)

38V - 2R = 2(V^2 - R^2)

Поделим обе стороны на 2:

19V - R = V^2 - R^2

Теперь мы можем воспользоваться разностью квадратов (V^2 - R^2 = (V + R)(V - R)):

19V - R = (V + R)(V - R)

Теперь мы можем подставить значение V (скорость лодки в чистой воде), которое равно 20 км/ч:

19 * 20 - R = (20 + R)(20 - R)

380 - R = (20 + R)(20 - R)

Раскроем правую сторону:

380 - R = (400 - R^2)

Теперь выразим R^2:

R^2 = 400 - 380 + R

R^2 = 20 + R

Теперь переносим все на одну сторону уравнения:

R^2 - R - 20 = 0

Факторизуем:

(R - 5)(R + 4) = 0

Таким образом, у нас есть два возможных значения для R:

  1. R - 5 = 0 => R = 5 км/ч
  2. R + 4 = 0 => R = -4 км/ч

Поскольку скорость течения не может быть отрицательной, то скорость реки составляет 5 км/ч.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос