Вопрос задан 26.06.2023 в 15:26. Предмет Алгебра. Спрашивает Шурыгина Анастасия.

Напишите координату вершины графика квадратичной функции y=(x-3)^2-2​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Калкабай Айнура.

Ответ:

(3;2)

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для найти координаты вершины графика квадратичной функции вида y = a(x - h)^2 + k, где (h, k) - координаты вершины, вы можете использовать следующие формулы:

h = x-координата вершины = -b / (2a) k = y-координата вершины = f(h)

В данном случае у вас есть функция y = (x - 3)^2 - 2, где a = 1, h = 3 и k = -2. Подставив эти значения в формулы:

h = -3 / (2 * 1) = -3 / 2 = -1.5 k = (-1.5 - 3)^2 - 2 = (-4.5)^2 - 2 = 20.25 - 2 = 18.25

Таким образом, координаты вершины графика данной квадратичной функции равны (-1.5, 18.25).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос