
Квадратичная функция, ее график и свойства. Урок 1 Как можно получить график
функции y = 3(x + 5)2 – 8 из графика функции y = 3x2? путем сдвига графика функции y = 3x2 вдоль оси Ox на 5 единиц вправо и вдоль оси Oy на 8 единиц вниз путем сдвига графика функции y = 3x2 вдоль оси Ox на 5 единиц влево и вдоль оси Oy на 8 единиц вниз путем сдвига графика функции y = 3x2 вдоль оси Ox на 5 единиц вправо и вдоль оси Oy на 8 единиц вверх путем сдвига графика функции y = 3x2 вдоль оси Ox на 5 единиц влево и вдоль оси Oy на 8 единиц вверхпожалуйста, помогите 

Ответы на вопрос

ответ на фото и объяснения там же




Quadratic Function, Graph, and Properties
A quadratic function is a polynomial function of degree 2, which means its highest power of the variable is 2. The general form of a quadratic function is y = ax^2 + bx + c, where a, b, and c are constants.
The graph of a quadratic function is a parabola. The shape of the parabola depends on the value of the coefficient a. If a is positive, the parabola opens upward, and if a is negative, the parabola opens downward.
The vertex of the parabola is the point where it reaches its minimum or maximum value. The vertex can be found using the formula x = -b / (2a). The y-coordinate of the vertex can be obtained by substituting the x-coordinate into the quadratic function.
Other important properties of quadratic functions include the axis of symmetry, which is a vertical line passing through the vertex, and the y-intercept, which is the point where the parabola intersects the y-axis.
Obtaining the Graph of y = 3(x + 5)^2 - 8 from the Graph of y = 3x^2
To obtain the graph of the function y = 3(x + 5)^2 - 8 from the graph of y = 3x^2, we need to perform certain transformations on the original graph.
1. Horizontal Shift: To shift the graph of y = 3x^2 5 units to the right, we need to replace x with (x - 5) in the equation. This will shift the graph horizontally to the right by 5 units.
The equation becomes y = 3(x - 5 + 5)^2 - 8.
2. Vertical Shift: To shift the graph of y = 3(x - 5)^2 - 8 8 units downward, we need to subtract 8 from the equation. This will shift the graph vertically downward by 8 units.
The equation becomes y = 3(x - 5)^2 - 8 - 8.
By performing these transformations, we obtain the equation y = 3(x + 5)^2 - 16, which represents the graph of y = 3(x + 5)^2 - 8 obtained from the graph of y = 3x^2.
Please note that the transformations mentioned above are applied in the order specified. First, the horizontal shift is performed, and then the vertical shift is applied.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili