Вопрос задан 26.06.2023 в 14:02. Предмет Алгебра. Спрашивает Феофилактов Владислав.

Довести нерівність срочно x^2+9y^4+1=>-3xy^2-x+3y^2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пудочкина Ксения.

x²+9y⁴+1 ≥ -3xy²-x+3y²

x²+x+1 ≥ -3xy²+3y²-9y⁴

x²+x+1 ≥ -3y²(x-1+y²)

y²≥0 за будь-якого значення у

⇒ -3y²≤0

Знайдемо вершину параболи f(x)=x²+x+1

xo= -b/2a = -1/2= -0,5

f(xo)= 0,25-0,5+1=0,75

Вітки параболи напрямлені вгору, адже а>0, отже в такому випадку значення виразу x²+x+1 завжди додатнє (бо функція завжди додатня)

Тоді x²+x+1>0 за будь-якого значення х

 

1)Якщо у=0, x-будь-яке число, то -3y²=0 ⇒ -3y²(x-1+y²)=0

Як вказано раніше, x²+x+1>0

Будь-яке додатнє число більше нуля, отже й

x²+x+1 > -3y²(x-1+y²) ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

2) Якщо х=0, y≠0,

З іншого боку, нерівність можна перетворити на таку:

x²+x+3xy² ≥ 3y²-9y⁴-1

х(x+1+3y²) ≥ 3y²-9y⁴-1

Якщо один із множників--нуль, то і весь вираз дорівнює нулю:

Необхідно довести, що

3y²-9y⁴-1 ≤ 0

-(3y²)²+3y²-1 ≤ 0

y⁴≥0

Заміна: 3y²=n,  n>0

-n²+n-1≤ 0

f(n)= -n²+n-1

no= -1/-2 = 1/2= 0,5

f(no)= -0,25+0,5-1 = -0,75

Вітки параболи напрямлені вниз, бо а<0

Отже, -n²+n-1≤ 0  ⇒ 3y²-9y⁴-1≤0

х(x+1+3y²) ≥ 3y²-9y⁴-1    ⇒    x²+9y⁴+1 ≥ -3xy²-x+3y²

3) Якщо х>0, y≠0

x²+x+3xy² ≥ 3y²-9y⁴-1

x²≥0

Як зазначено раніше, 3y²-9y⁴-1<0

Відомо, що x²>0, 3y²>0

Оскільки х--додатнє число, то 3xy²>0

При додаванні додатніх чисел результат теж додатній: x²+x+3xy²>0

Додатнє число завжди більше за від'ємне, тож

x²+x+3xy² > 3y²-9y⁴-1 ⇒ x²+9y⁴+1 ≥ -3xy²-x+3y²

4) Якщо х<0, y≠0

x²+x+3xy² ≥ -9y⁴+3y²-1

Заміна: 3y²=n,  n>0

f(x)=x²+x(1+n)

b=1+n

коефіцієнт b не впливає на зміщення по ординаті, а коефіцієнта с в наданій квадратичній функції немає. Також вітки параболи напрямлені вгору, бо а>0.

Таким чином, x²+x(1+n)>0, а -n²+n-1<0, тому x²+x(1+n)>-n²+n-1<0   ⇒  x²+x+3xy² ≥ -9y⁴+3y²-1   ⇒  x²+9y⁴+1 ≥ -3xy²-x+3y²

Нерівність доведено

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте розв'яжемо дану нерівність:

x^2 + 9y^4 + 1 >= -3xy^2 - x + 3y^2

Спростимо ліву та праву сторони нерівності окремо:

Ліва сторона: x^2 + 9y^4 + 1

Права сторона: -3xy^2 - x + 3y^2

Тепер перенесемо всі члени нерівності на одну сторону, щоб отримати стандартний вигляд нерівності:

x^2 + 9y^4 + 1 + 3xy^2 + x - 3y^2 >= 0

Тепер можемо об'єднати деякі члени:

x^2 + x + 3xy^2 - 3y^2 + 9y^4 + 1 >= 0

Тепер нам потрібно спростити вираз, який виходить після об'єднання членів. Враховуючи, що це квадратична нерівність відносно x та y, ми можемо спростити її за допомогою дискримінанта і квадратичної форми.

Для спрощення виразу обчислимо дискримінант квадратичної форми D:

D = b^2 - 4ac

Де a = 9, b = 1 та c = 3y^2 - 3y^4 - 1.

D = 1^2 - 4 * 9 * (3y^2 - 3y^4 - 1)

D = 1 - 36(3y^2 - 3y^4 - 1)

D = 1 - 108y^2 + 108y^4 + 36

Тепер повернемось до нашої нерівності:

x^2 + x + 3xy^2 - 3y^2 + 9y^4 + 1 >= 0

Зараз ми знаємо значення дискримінанта D, і можемо розглянути різні випадки:

  1. Якщо D > 0, то маємо два різних дійсних корені x. В цьому випадку нерівність буде справедливою для всіх значень y.

  2. Якщо D = 0, то маємо один дійсний корінь x. В цьому випадку також нерівність буде справедливою для всіх значень y.

  3. Якщо D < 0, то нерівність не має дійсних коренів x, і тому вона не буде справедливою для жодного значення y.

Отже, щоб довести дану нерівність, нам потрібно аналізувати значення D в залежності від значення y.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос