Вопрос задан 24.06.2023 в 02:02. Предмет Алгебра. Спрашивает Кравчук Диана.

Найди коэффициент k в уравнении параболы y=kx2, зная, что парабола проходит через точку A(11;968).

Ответ: k= .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Давлетов Даниль.

Ответ:

А(11;968), y=kx².

986=k×11²=k×121.

k=968÷121=8.

0 0
Отвечает Пивкин Игорь.

Подставим в уравнение у=кх² координаты точки А, т.е. х=11, у=968; 968=121*8; 11²=121.

получим 968=11²к, откуда к=8*121/121=8

Значит, уравнение параболы у=8х²

Ответ к=8

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для найти коэффициент k в уравнении параболы y=kx2y = kx^2, при условии, что парабола проходит через точку A(11, 968), вы можете использовать координаты этой точки, чтобы решить уравнение.

У вас есть точка A(11, 968), и вы хотите, чтобы она удовлетворяла уравнению y=kx2y = kx^2. Подставьте координаты точки A в уравнение:

968 = k * 11^2

Теперь решите это уравнение относительно k:

968 = k * 121

Чтобы избавиться от умножения на 121, поделите обе стороны на 121:

k = 968 / 121

Теперь вы можете вычислить k:

k = 8

Итак, коэффициент k в уравнении параболы y=kx2y = kx^2, при условии, что парабола проходит через точку A(11, 968), равен 8.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос