Вопрос задан 23.06.2023 в 17:50. Предмет Алгебра. Спрашивает Малышко Ангелина.

Знайти загальний вигляд первісних для функції f(x)=4x^3-6x+5

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беспалова Анастасия.

Ответ:

Хорошего дня :)

Объяснение:

《○●》

《_____☆]


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження загального вигляду первісних функції f(x) = 4x^3 - 6x + 5 спочатку знайдемо первісну для кожного окремого члена цієї функції.

  1. Перший член: ∫4x^3 dx Щоб знайти первісну для 4x^3, давайте використовувати правило степені: ∫4x^3 dx = (4/4)x^4 + C = x^4 + C₁, де C₁ - довільна константа.

  2. Другий член: ∫(-6x) dx Щоб знайти первісну для -6x, просто множимо x на -6 та інтегруємо: ∫(-6x) dx = -6 * (1/2)x^2 + C = -3x^2 + C₂, де C₂ - довільна константа.

  3. Третій член: ∫5 dx Щоб знайти первісну для постійної константи 5, інтегруємо 5 відносно x: ∫5 dx = 5x + C₃, де C₃ - довільна константа.

Тепер об'єднаємо всі ці результати, щоб отримати загальний вигляд первісних для функції f(x):

F(x) = x^4 + C₁ - 3x^2 + C₂ + 5x + C₃

Ця формула включає довільні константи C₁, C₂ і C₃, які можуть мати будь-які значення.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос