
(2х-5)⁴+2(2х-5)²-99=0


Ответы на вопрос

Ответ прикреплён. Удачи.




To solve the equation (2x-5)^4 + 2(2x-5)^2 - 99 = 0, you can use a substitution to make it easier to solve. Let's substitute (2x-5)^2 with a new variable, say u:
u = (2x-5)^2
Now, the equation becomes:
u^2 + 2u - 99 = 0
This is a quadratic equation in terms of u, and you can solve it using the quadratic formula:
u = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = 2, and c = -99. Plugging these values into the quadratic formula:
u = (-2 ± √(2² - 4(1)(-99))) / (2(1))
u = (-2 ± √(4 + 396)) / 2
u = (-2 ± √400) / 2
u = (-2 ± 20) / 2
Now, you have two possible values for u:
- u = (-2 + 20) / 2 = 18 / 2 = 9
- u = (-2 - 20) / 2 = -22 / 2 = -11
Now that you have the values of u, you can revert back to the original variable (2x-5)^2:
- (2x-5)^2 = 9
- (2x-5)^2 = -11
For the first equation:
Take the square root of both sides:
2x-5 = ±√9 2x-5 = ±3
Now, solve for x in both cases:
2x-5 = 3 2x = 3 + 5 2x = 8 x = 8/2 x = 4
2x-5 = -3 2x = -3 + 5 2x = 2 x = 2/2 x = 1
So, there are two possible solutions for x:
x = 4 and x = 1.
For the second equation (2x-5)^2 = -11, there are no real solutions because the square of a real number cannot be negative. So the only solutions are x = 4 and x = 1.



To solve the equation (2x-5)^4 + 2(2x-5)^2 - 99 = 0, you can use a substitution to simplify it. Let's use a substitution to make the equation easier to work with:
Let u = (2x-5).
Now, substitute u into the equation:
u^4 + 2u^2 - 99 = 0.
Now, this is a quadratic equation in terms of u. To solve it, you can use the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / (2a).
In this case, a = 1, b = 2, and c = -99. Plug these values into the quadratic formula:
u = (-2 ± √(2^2 - 4(1)(-99))) / (2(1)).
Now, calculate the values of u:
u = (-2 ± √(4 + 396)) / 2, u = (-2 ± √400) / 2, u = (-2 ± 20) / 2.
This yields two possible values for u:
- u = (18) / 2 = 9,
- u = (-22) / 2 = -11.
Now that you have these values of u, you can substitute them back into the original equation to find the corresponding values of x:
For u = 9: 2x - 5 = 9, 2x = 14, x = 7.
For u = -11: 2x - 5 = -11, 2x = -6, x = -3.
So, the solutions to the equation (2x-5)^4 + 2(2x-5)^2 - 99 = 0 are x = 7 and x = -3.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili