Вопрос задан 18.06.2023 в 15:26. Предмет Алгебра. Спрашивает Покляк Виолетта.

Составьте квадратное уравнение корни которого равны - 03 и 08. 20 баллов

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петрусенко Михаил.

x^2-11x+24

Объяснение:

(x - 3)*(x-8), раскрыть скобки

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для составления квадратного уравнения с заданными корнями, необходимо использовать формулу Виета.

Корни уравнения равны -0.3 и 0.8, тогда сумма корней будет равна: -0.3 + 0.8 = 0.5

Согласно формуле Виета, сумма корней квадратного уравнения равна -b/a, где b - коэффициент при x в линейном члене уравнения, а a - коэффициент при x^2 в квадратном члене уравнения.

Таким образом, получаем уравнение вида: a*x^2 + b*x + c = 0

где a = 1 (коэффициент при x^2) b = -0.5 (сумма корней) c = p*q

p = -0.3 * 0.8 = -0.24 q = -0.3 + 0.8 = 0.5

c = -0.24 * 0.5 = -0.12

Подставляем значения a, b и c в уравнение:

x^2 - 0.5*x - 0.12 = 0

Таким образом, квадратное уравнение с корнями -0.3 и 0.8 будет иметь вид: x^2 - 0.5*x - 0.12 = 0.

Надеюсь, это ответ на ваш вопрос.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос