
Решить уравнения. 1. 4x+x²+1=x(2+x) 2. 3x(x+1)-2x(5x+3)=7x(2-x)+34Решите пожалуйста!!


Ответы на вопрос





To solve the given equations, let's go through each one step by step:
1. Equation 1: 4x + x² + 1 = x(2 + x) + 2
To solve this equation, we need to simplify both sides and then solve for x.
Expanding the right side: x(2 + x) + 2 = 2x + x² + 2
Now, let's rewrite the equation: 4x + x² + 1 = 2x + x² + 2
Combining like terms: 4x - 2x + x² - x² + 1 - 2 = 0
Simplifying further: 2x - 1 = 0
To isolate x, we can add 1 to both sides: 2x = 1
Finally, divide both sides by 2: x = 1/2
Therefore, the solution to Equation 1 is x = 1/2.
2. Equation 2: 3x(x + 1) - 2x(5x + 3) = 7x(2 - x) + 34
To solve this equation, we'll follow a similar process of simplifying and solving for x.
Expanding the left side: 3x(x + 1) - 2x(5x + 3) = 3x² + 3x - 10x² - 6x
Expanding the right side: 7x(2 - x) + 34 = 14x - 7x² + 34
Now, let's rewrite the equation: 3x² + 3x - 10x² - 6x = 14x - 7x² + 34
Combining like terms: 3x - 6x + 3x² - 10x² - 14x + 7x² = 34
Simplifying further: -17x² - 17x + 34 = 0
Dividing the entire equation by -17 to simplify: x² + x - 2 = 0
Now, we can factor the quadratic equation: (x + 2)(x - 1) = 0
Setting each factor equal to zero: x + 2 = 0 or x - 1 = 0
Solving for x in each case: x = -2 or x = 1
Therefore, the solutions to Equation 2 are x = -2 and x = 1.
In summary, the solutions to the given equations are: - Equation 1: x = 1/2 - Equation 2: x = -2, x = 1


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili