Вопрос задан 18.06.2023 в 04:27. Предмет Алгебра. Спрашивает Ковальская Милана.

Двое соперников участвует в олимпиаде. Вероятность того, что первый решит все задачи верно равна

0,89. Для второго эта вероятность равна 0,92. Найти вероятность того, что только один займет первое место. Помогите пожалуйста, очень надо!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жариков Максим.

Ответ:

0,1724

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two competitors are participating in an Olympiad. The probability that the first competitor solves all the problems correctly is 0.89, and the probability that the second competitor solves all the problems correctly is 0.92. We need to find the probability that only one of them will take the first place.

Solution

To find the probability that only one of the competitors will take the first place, we need to consider two cases: 1. The first competitor solves all the problems correctly, and the second competitor does not. 2. The first competitor does not solve all the problems correctly, and the second competitor does.

Let's calculate the probabilities for each case and then add them together to get the final probability.

Case 1: The first competitor solves all the problems correctly, and the second competitor does not.

The probability of the first competitor solving all the problems correctly is given as 0.89. The probability of the second competitor not solving all the problems correctly can be calculated as 1 - 0.92 = 0.08.

The probability of both events happening together (the first competitor solving all the problems correctly and the second competitor not solving all the problems correctly) can be calculated by multiplying their individual probabilities: 0.89 * 0.08 = 0.0712.

Case 2: The first competitor does not solve all the problems correctly, and the second competitor does.

The probability of the first competitor not solving all the problems correctly can be calculated as 1 - 0.89 = 0.11. The probability of the second competitor solving all the problems correctly is given as 0.92.

The probability of both events happening together (the first competitor not solving all the problems correctly and the second competitor solving all the problems correctly) can be calculated by multiplying their individual probabilities: 0.11 * 0.92 = 0.1012.

Final Probability

To find the probability that only one of the competitors will take the first place, we need to add the probabilities from both cases: 0.0712 + 0.1012 = 0.1724.

Therefore, the probability that only one of the competitors will take the first place is 0.1724.

Please note that the above calculations are based on the given probabilities and assumptions made in the problem statement.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос