
Двое соперников участвует в олимпиаде. Вероятность того, что первый решит все задачи верно равна
0,89. Для второго эта вероятность равна 0,92. Найти вероятность того, что только один займет первое место. Помогите пожалуйста, очень надо!!!

Ответы на вопрос

Ответ:
0,1724
Объяснение:



Problem Analysis
We are given that two competitors are participating in an Olympiad. The probability that the first competitor solves all the problems correctly is 0.89, and the probability that the second competitor solves all the problems correctly is 0.92. We need to find the probability that only one of them will take the first place.Solution
To find the probability that only one of the competitors will take the first place, we need to consider two cases: 1. The first competitor solves all the problems correctly, and the second competitor does not. 2. The first competitor does not solve all the problems correctly, and the second competitor does.Let's calculate the probabilities for each case and then add them together to get the final probability.
Case 1: The first competitor solves all the problems correctly, and the second competitor does not.
The probability of the first competitor solving all the problems correctly is given as 0.89. The probability of the second competitor not solving all the problems correctly can be calculated as 1 - 0.92 = 0.08.The probability of both events happening together (the first competitor solving all the problems correctly and the second competitor not solving all the problems correctly) can be calculated by multiplying their individual probabilities: 0.89 * 0.08 = 0.0712.
Case 2: The first competitor does not solve all the problems correctly, and the second competitor does.
The probability of the first competitor not solving all the problems correctly can be calculated as 1 - 0.89 = 0.11. The probability of the second competitor solving all the problems correctly is given as 0.92.The probability of both events happening together (the first competitor not solving all the problems correctly and the second competitor solving all the problems correctly) can be calculated by multiplying their individual probabilities: 0.11 * 0.92 = 0.1012.
Final Probability
To find the probability that only one of the competitors will take the first place, we need to add the probabilities from both cases: 0.0712 + 0.1012 = 0.1724.Therefore, the probability that only one of the competitors will take the first place is 0.1724.
Please note that the above calculations are based on the given probabilities and assumptions made in the problem statement.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili